Few Exemplar-Based General Medical Image Segmentation via Domain-Aware Selective Adaptation
- URL: http://arxiv.org/abs/2410.09254v2
- Date: Fri, 25 Oct 2024 16:45:19 GMT
- Title: Few Exemplar-Based General Medical Image Segmentation via Domain-Aware Selective Adaptation
- Authors: Chen Xu, Qiming Huang, Yuqi Hou, Jiangxing Wu, Fan Zhang, Hyung Jin Chang, Jianbo Jiao,
- Abstract summary: Medical image segmentation poses challenges due to domain gaps, data modality variations, and dependency on domain knowledge or experts.
We introduce a domain-aware selective adaptation approach to adapt the general knowledge learned from a large model trained with natural images to the corresponding medical domains/modalities.
- Score: 28.186785488818135
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Medical image segmentation poses challenges due to domain gaps, data modality variations, and dependency on domain knowledge or experts, especially for low- and middle-income countries (LMICs). Whereas for humans, given a few exemplars (with corresponding labels), we are able to segment different medical images even without exten-sive domain-specific clinical training. In addition, current SAM-based medical segmentation models use fine-grained visual prompts, such as the bounding rectangle generated from manually annotated target segmentation mask, as the bounding box (bbox) prompt during the testing phase. However, in actual clinical scenarios, no such precise prior knowledge is available. Our experimental results also reveal that previous models nearly fail to predict when given coarser bbox prompts. Considering these issues, in this paper, we introduce a domain-aware selective adaptation approach to adapt the general knowledge learned from a large model trained with natural images to the corresponding medical domains/modalities, with access to only a few (e.g. less than 5) exemplars. Our method mitigates the aforementioned limitations, providing an efficient and LMICs-friendly solution. Extensive experimental analysis showcases the effectiveness of our approach, offering potential advancements in healthcare diagnostics and clinical applications in LMICs.
Related papers
- Retrieval-augmented Few-shot Medical Image Segmentation with Foundation Models [17.461510586128874]
We propose a novel method that adapts DINOv2 and Segment Anything Model 2 for retrieval-augmented few-shot medical image segmentation.
Our approach uses DINOv2's feature as query to retrieve similar samples from limited annotated data, which are then encoded as memories and stored in memory bank.
arXiv Detail & Related papers (2024-08-16T15:48:07Z) - Key Patches Are All You Need: A Multiple Instance Learning Framework For Robust Medical Diagnosis [15.964609888720315]
We propose to limit the amount of information deep learning models use to reach the final classification, by using a multiple instance learning framework.
We evaluate our framework on two medical applications: skin cancer diagnosis using dermoscopy and breast cancer diagnosis using mammography.
arXiv Detail & Related papers (2024-05-02T18:21:25Z) - EviPrompt: A Training-Free Evidential Prompt Generation Method for
Segment Anything Model in Medical Images [14.899388051854084]
Medical image segmentation has immense clinical applicability but remains a challenge despite advancements in deep learning.
This paper introduces a novel training-free evidential prompt generation method named EviPrompt to overcome these issues.
The proposed method, built on the inherent similarities within medical images, requires only a single reference image-annotation pair.
arXiv Detail & Related papers (2023-11-10T21:22:22Z) - Medical Image Segmentation with Domain Adaptation: A Survey [0.38979646385036165]
This review focuses on domain adaptation approaches for DL-based medical image segmentation.
We first present the motivation and background knowledge underlying domain adaptations, then provide a review of domain adaptation applications in medical image segmentations.
Our goal was to provide researchers with up-to-date references on the applications of domain adaptation in medical image segmentation studies.
arXiv Detail & Related papers (2023-11-03T04:17:06Z) - Generalizing Across Domains in Diabetic Retinopathy via Variational
Autoencoders [0.0]
Domain generalization for Diabetic Retinopathy classification allows a model to adeptly classify retinal images.
In this study, we explore the inherent capacity of variational autoencoders to disentangle the latent space of fundus images.
arXiv Detail & Related papers (2023-09-20T13:29:22Z) - Ambiguous Medical Image Segmentation using Diffusion Models [60.378180265885945]
We introduce a single diffusion model-based approach that produces multiple plausible outputs by learning a distribution over group insights.
Our proposed model generates a distribution of segmentation masks by leveraging the inherent sampling process of diffusion.
Comprehensive results show that our proposed approach outperforms existing state-of-the-art ambiguous segmentation networks.
arXiv Detail & Related papers (2023-04-10T17:58:22Z) - Domain Generalization on Medical Imaging Classification using Episodic
Training with Task Augmentation [62.49837463676111]
We propose a novel scheme of episodic training with task augmentation on medical imaging classification.
Motivated by the limited number of source domains in real-world medical deployment, we consider the unique task-level overfitting.
arXiv Detail & Related papers (2021-06-13T03:56:59Z) - Few-shot Medical Image Segmentation using a Global Correlation Network
with Discriminative Embedding [60.89561661441736]
We propose a novel method for few-shot medical image segmentation.
We construct our few-shot image segmentor using a deep convolutional network trained episodically.
We enhance discriminability of deep embedding to encourage clustering of the feature domains of the same class.
arXiv Detail & Related papers (2020-12-10T04:01:07Z) - Explaining Clinical Decision Support Systems in Medical Imaging using
Cycle-Consistent Activation Maximization [112.2628296775395]
Clinical decision support using deep neural networks has become a topic of steadily growing interest.
clinicians are often hesitant to adopt the technology because its underlying decision-making process is considered to be intransparent and difficult to comprehend.
We propose a novel decision explanation scheme based on CycleGAN activation which generates high-quality visualizations of classifier decisions even in smaller data sets.
arXiv Detail & Related papers (2020-10-09T14:39:27Z) - Collaborative Unsupervised Domain Adaptation for Medical Image Diagnosis [102.40869566439514]
We seek to exploit rich labeled data from relevant domains to help the learning in the target task via Unsupervised Domain Adaptation (UDA)
Unlike most UDA methods that rely on clean labeled data or assume samples are equally transferable, we innovatively propose a Collaborative Unsupervised Domain Adaptation algorithm.
We theoretically analyze the generalization performance of the proposed method, and also empirically evaluate it on both medical and general images.
arXiv Detail & Related papers (2020-07-05T11:49:17Z) - Weakly supervised multiple instance learning histopathological tumor
segmentation [51.085268272912415]
We propose a weakly supervised framework for whole slide imaging segmentation.
We exploit a multiple instance learning scheme for training models.
The proposed framework has been evaluated on multi-locations and multi-centric public data from The Cancer Genome Atlas and the PatchCamelyon dataset.
arXiv Detail & Related papers (2020-04-10T13:12:47Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.