論文の概要: The 2020 United States Decennial Census Is More Private Than You (Might) Think
- arxiv url: http://arxiv.org/abs/2410.09296v1
- Date: Fri, 11 Oct 2024 23:06:15 GMT
- ステータス: 処理完了
- システム内更新日: 2024-10-30 15:23:18.102395
- Title: The 2020 United States Decennial Census Is More Private Than You (Might) Think
- Title(参考訳): 2020年の米国国勢調査は、あなたより私的だ
- Authors: Buxin Su, Weijie J. Su, Chendi Wang,
- Abstract要約: 我々は、2020年国勢調査のプライバシー予算の8.50%から13.76%が8つの地理的レベルごとに使われていないことを示した。
我々は、地理的レベルで同じプライバシー予算を維持しながら、ノイズ分散を15.08%から24.82%削減する。
- 参考スコア(独自算出の注目度): 25.32778927275117
- License: http://creativecommons.org/licenses/by-nc-nd/4.0/
- Abstract: The U.S. Decennial Census serves as the foundation for many high-profile policy decision-making processes, including federal funding allocation and redistricting. In 2020, the Census Bureau adopted differential privacy to protect the confidentiality of individual responses through a disclosure avoidance system that injects noise into census data tabulations. The Bureau subsequently posed an open question: Could sharper privacy guarantees be obtained for the 2020 U.S. Census compared to their published guarantees, or equivalently, had the nominal privacy budgets been fully utilized? In this paper, we affirmatively address this open problem by demonstrating that between 8.50% and 13.76% of the privacy budget for the 2020 U.S. Census remains unused for each of the eight geographical levels, from the national level down to the block level. This finding is made possible through our precise tracking of privacy losses using $f$-differential privacy, applied to the composition of private queries across various geographical levels. Our analysis indicates that the Census Bureau introduced unnecessarily high levels of injected noise to achieve the claimed privacy guarantee for the 2020 U.S. Census. Consequently, our results enable the Bureau to reduce noise variances by 15.08% to 24.82% while maintaining the same privacy budget for each geographical level, thereby enhancing the accuracy of privatized census statistics. We empirically demonstrate that reducing noise injection into census statistics mitigates distortion caused by privacy constraints in downstream applications of private census data, illustrated through a study examining the relationship between earnings and education.
- Abstract(参考訳): アメリカ十年国勢調査は、連邦政府の予算配分や再編成など、多くの著名な政策決定プロセスの基礎となっている。
2020年には、国勢調査データ集計にノイズを注入する開示回避システムを通じて、個々の応答の機密性を保護するために、国勢調査局は差分プライバシーを採用した。
2020年国勢調査のプライバシー保証は、公表された保証と同等か、あるいは、名目上のプライバシー予算が完全に活用されたのか?
本稿では、2020年国勢調査のプライバシー予算の8.50%から13.76%が、国家レベルからブロックレベルまでの8つの地理的レベルに未使用であることを示すことによって、このオープンな問題に肯定的に対処する。
この発見は、さまざまな地理的レベルのプライベートクエリの合成に適用された$f$-differential privacyを使用して、プライバシー損失の正確な追跡によって可能となる。
我々の分析は、2020年の国勢調査で主張されるプライバシー保証を達成するために、国勢調査局が必要以上に高いレベルのノイズを注入したことを示している。
その結果,各地理的レベルで同じプライバシー予算を維持しつつ,騒音の分散を15.08%から24.82%に削減し,民営化された国勢調査統計の精度を高めることができた。
本研究では,センサス統計におけるノイズ注入の低減が,個人センサスデータの下流適用におけるプライバシー制約による歪みを軽減することを実証的に示し,収益と教育の関係について検討した。
関連論文リスト
- Quantifying Privacy Risks of Public Statistics to Residents of Subsidized Housing [28.493827954922885]
補助住宅の回答者は、強制退去を恐れて、故意に無許可の子供や他の世帯メンバーに言及しない可能性がある。
十年国勢調査と住宅都市開発省の公的統計を組み合わせることで、簡易で安価な復興攻撃を実演する。
我々の結果は、信頼できる正確な国勢調査を求める政策立案者にとって貴重な例である。
論文 参考訳(メタデータ) (2024-07-05T18:00:02Z) - Noisy Measurements Are Important, the Design of Census Products Is Much More Important [1.52292571922932]
McCartan et al. (2023) は「国勢調査データユーザーのための差分プライバシー業務」を要求している。
このコメントは、2020年の国勢調査ノイズ計測ファイル(NMFs)が、この嘆願の最良の焦点ではない理由を説明している。
論文 参考訳(メタデータ) (2023-12-20T15:43:04Z) - Adaptive Privacy Composition for Accuracy-first Mechanisms [55.53725113597539]
ノイズ低減機構はますます正確な答えを生み出す。
アナリストは、公表された最も騒々しい、あるいは最も正確な回答のプライバシー費用のみを支払う。
ポスト前のプライベートメカニズムがどのように構成されるかは、まだ研究されていない。
我々は、分析者が微分プライベートとポストプライベートのメカニズムを適応的に切り替えることのできるプライバシーフィルタを開発した。
論文 参考訳(メタデータ) (2023-06-24T00:33:34Z) - Evaluating Bias and Noise Induced by the U.S. Census Bureau's Privacy
Protection Methods [0.0]
アメリカ合衆国国勢調査局は、国勢調査統計の正確さと個々の情報の保護との間に難しいトレードオフに直面している。
我々は,2つの主要な開示回避システムによって誘導されるバイアスとノイズの独立評価を行う。
TopDownのポストプロセッシングはNMFノイズを劇的に低減し、スワップの精度に類似したデータを生成する。
論文 参考訳(メタデータ) (2023-06-13T03:30:19Z) - How Do Input Attributes Impact the Privacy Loss in Differential Privacy? [55.492422758737575]
DPニューラルネットワークにおけるオブジェクトごとの規範と個人のプライバシ損失との関係について検討する。
プライバシ・ロス・インプット・サセプティビリティ(PLIS)と呼ばれる新しい指標を導入し、被験者のプライバシ・ロスを入力属性に適応させることを可能にした。
論文 参考訳(メタデータ) (2022-11-18T11:39:03Z) - Comment: The Essential Role of Policy Evaluation for the 2020 Census
Disclosure Avoidance System [0.0]
Boyd and Sarathy, "Differential Perspectives: Epistemic Disconnects around around the US Census Bureau's Use of Differential Privacy"
Census Disclosure Avoidance Systemの実証的な評価は、ベンチマークデータが人口数の基本的真実ではないことを認識できなかった、と我々は主張する。
データユーティリティとプライバシ保護の間には、政策立案者が重要なトレードオフに直面しなければならない、と我々は主張する。
論文 参考訳(メタデータ) (2022-10-15T21:41:54Z) - Releasing survey microdata with exact cluster locations and additional
privacy safeguards [77.34726150561087]
本稿では,プライバシ保護を付加した独自のマイクロデータの有用性を活用した,代替的なマイクロデータ配信戦略を提案する。
当社の戦略は, 再識別の試みにおいても, 任意の属性に対する再識別リスクを60~80%削減する。
論文 参考訳(メタデータ) (2022-05-24T19:37:11Z) - The Impact of the U.S. Census Disclosure Avoidance System on
Redistricting and Voting Rights Analysis [0.0]
米国国勢調査局は、2020年国勢調査の回答者のプライバシーを、情報開示回避システム(DAS)を通じて保護する計画だ。
保護されたデータは、目的を再限定するのに十分な品質ではないことが分かりました。
分析の結果,DASが保護するデータは,投票者の投票率や党派・人種構成に応じて,特定の領域に偏っていることがわかった。
論文 参考訳(メタデータ) (2021-05-29T03:32:36Z) - Decision Making with Differential Privacy under a Fairness Lens [65.16089054531395]
アメリカ国勢調査局は、多くの重要な意思決定プロセスの入力として使用される個人のグループに関するデータセットと統計を公表している。
プライバシと機密性要件に従うために、これらの機関は、しばしば、プライバシを保存するバージョンのデータを公開する必要がある。
本稿では,差分的プライベートデータセットのリリースについて検討し,公平性の観点から重要な資源配分タスクに与える影響を考察する。
論文 参考訳(メタデータ) (2021-05-16T21:04:19Z) - Differential Privacy of Hierarchical Census Data: An Optimization
Approach [53.29035917495491]
国勢調査局(Census Bureaus)は、個人に関する機密情報を明らかにすることなく、大人口に関する社会経済的データをまとめて公開することに興味を持っている。
最近の出来事では、これらの組織が直面しているプライバシー上の課題がいくつか特定されている。
本稿では,階層的な個人数を解放する新たな差分プライバシ機構を提案する。
論文 参考訳(メタデータ) (2020-06-28T18:19:55Z) - PGLP: Customizable and Rigorous Location Privacy through Policy Graph [68.3736286350014]
我々はPGLPと呼ばれる新しい位置プライバシーの概念を提案し、カスタマイズ可能で厳格なプライバシー保証を備えたプライベートロケーションをリリースするためのリッチなインターフェースを提供する。
具体的には,ユーザの位置プライバシー要件を,表現的かつカスタマイズ可能なテキスト配置ポリシーグラフを用いて形式化する。
第3に、位置露光の検出、ポリシーグラフの修復、およびカスタマイズ可能な厳格な位置プライバシーを備えたプライベートな軌跡リリースをパイプライン化する、プライベートな位置トレースリリースフレームワークを設計する。
論文 参考訳(メタデータ) (2020-05-04T04:25:59Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。