Conformalized Generative Bayesian Imaging: An Uncertainty Quantification Framework for Computational Imaging
- URL: http://arxiv.org/abs/2504.07696v1
- Date: Thu, 10 Apr 2025 12:30:46 GMT
- Title: Conformalized Generative Bayesian Imaging: An Uncertainty Quantification Framework for Computational Imaging
- Authors: Canberk Ekmekci, Mujdat Cetin,
- Abstract summary: Uncertainty quantification plays an important role in achieving trustworthy and reliable learning-based computational imaging.<n>Recent advances in generative modeling and Bayesian neural networks have enabled the development of uncertainty-aware image reconstruction methods.<n>We present a scalable framework that can quantify both aleatoric and epistemic uncertainties.
- Score: 0.0
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Uncertainty quantification plays an important role in achieving trustworthy and reliable learning-based computational imaging. Recent advances in generative modeling and Bayesian neural networks have enabled the development of uncertainty-aware image reconstruction methods. Current generative model-based methods seek to quantify the inherent (aleatoric) uncertainty on the underlying image for given measurements by learning to sample from the posterior distribution of the underlying image. On the other hand, Bayesian neural network-based approaches aim to quantify the model (epistemic) uncertainty on the parameters of a deep neural network-based reconstruction method by approximating the posterior distribution of those parameters. Unfortunately, an ongoing need for an inversion method that can jointly quantify complex aleatoric uncertainty and epistemic uncertainty patterns still persists. In this paper, we present a scalable framework that can quantify both aleatoric and epistemic uncertainties. The proposed framework accepts an existing generative model-based posterior sampling method as an input and introduces an epistemic uncertainty quantification capability through Bayesian neural networks with latent variables and deep ensembling. Furthermore, by leveraging the conformal prediction methodology, the proposed framework can be easily calibrated to ensure rigorous uncertainty quantification. We evaluated the proposed framework on magnetic resonance imaging, computed tomography, and image inpainting problems and showed that the epistemic and aleatoric uncertainty estimates produced by the proposed framework display the characteristic features of true epistemic and aleatoric uncertainties. Furthermore, our results demonstrated that the use of conformal prediction on top of the proposed framework enables marginal coverage guarantees consistent with frequentist principles.
Related papers
- Tractable Function-Space Variational Inference in Bayesian Neural
Networks [72.97620734290139]
A popular approach for estimating the predictive uncertainty of neural networks is to define a prior distribution over the network parameters.
We propose a scalable function-space variational inference method that allows incorporating prior information.
We show that the proposed method leads to state-of-the-art uncertainty estimation and predictive performance on a range of prediction tasks.
arXiv Detail & Related papers (2023-12-28T18:33:26Z) - Integrating Uncertainty into Neural Network-based Speech Enhancement [27.868722093985006]
Supervised masking approaches in the time-frequency domain aim to employ deep neural networks to estimate a multiplicative mask to extract clean speech.
This leads to a single estimate for each input without any guarantees or measures of reliability.
We study the benefits of modeling uncertainty in clean speech estimation.
arXiv Detail & Related papers (2023-05-15T15:55:12Z) - Regularized Vector Quantization for Tokenized Image Synthesis [126.96880843754066]
Quantizing images into discrete representations has been a fundamental problem in unified generative modeling.
deterministic quantization suffers from severe codebook collapse and misalignment with inference stage while quantization suffers from low codebook utilization and reconstruction objective.
This paper presents a regularized vector quantization framework that allows to mitigate perturbed above issues effectively by applying regularization from two perspectives.
arXiv Detail & Related papers (2023-03-11T15:20:54Z) - Stable Deep MRI Reconstruction using Generative Priors [13.400444194036101]
We propose a novel deep neural network based regularizer which is trained in a generative setting on reference magnitude images only.
The results demonstrate competitive performance, on par with state-of-the-art end-to-end deep learning methods.
arXiv Detail & Related papers (2022-10-25T08:34:29Z) - Uncertainty Quantification for Deep Unrolling-Based Computational
Imaging [0.0]
We propose a learning-based image reconstruction framework that incorporates the observation model into the reconstruction task.
We show that the proposed framework can provide uncertainty information while achieving comparable reconstruction performance to state-of-the-art deep unrolling methods.
arXiv Detail & Related papers (2022-07-02T00:22:49Z) - NUQ: Nonparametric Uncertainty Quantification for Deterministic Neural
Networks [151.03112356092575]
We show the principled way to measure the uncertainty of predictions for a classifier based on Nadaraya-Watson's nonparametric estimate of the conditional label distribution.
We demonstrate the strong performance of the method in uncertainty estimation tasks on a variety of real-world image datasets.
arXiv Detail & Related papers (2022-02-07T12:30:45Z) - Dense Uncertainty Estimation [62.23555922631451]
In this paper, we investigate neural networks and uncertainty estimation techniques to achieve both accurate deterministic prediction and reliable uncertainty estimation.
We work on two types of uncertainty estimations solutions, namely ensemble based methods and generative model based methods, and explain their pros and cons while using them in fully/semi/weakly-supervised framework.
arXiv Detail & Related papers (2021-10-13T01:23:48Z) - Bayesian Uncertainty Estimation of Learned Variational MRI
Reconstruction [63.202627467245584]
We introduce a Bayesian variational framework to quantify the model-immanent (epistemic) uncertainty.
We demonstrate that our approach yields competitive results for undersampled MRI reconstruction.
arXiv Detail & Related papers (2021-02-12T18:08:14Z) - The Hidden Uncertainty in a Neural Networks Activations [105.4223982696279]
The distribution of a neural network's latent representations has been successfully used to detect out-of-distribution (OOD) data.
This work investigates whether this distribution correlates with a model's epistemic uncertainty, thus indicating its ability to generalise to novel inputs.
arXiv Detail & Related papers (2020-12-05T17:30:35Z) - Quantifying Sources of Uncertainty in Deep Learning-Based Image
Reconstruction [5.129343375966527]
We propose a scalable and efficient framework to simultaneously quantify aleatoric and epistemic uncertainties in learned iterative image reconstruction.
We show that our method exhibits competitive performance against conventional benchmarks for computed tomography with both sparse view and limited angle data.
arXiv Detail & Related papers (2020-11-17T04:12:52Z) - A deep-learning based Bayesian approach to seismic imaging and
uncertainty quantification [0.4588028371034407]
Uncertainty is essential when dealing with ill-conditioned inverse problems.
It is often not possible to formulate a prior distribution that precisely encodes our prior knowledge about the unknown.
We propose to use the functional form of a randomly convolutional neural network as an implicit structured prior.
arXiv Detail & Related papers (2020-01-13T23:46:18Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.