論文の概要: Graph Neural Alchemist: An innovative fully modular architecture for time series-to-graph classification
- arxiv url: http://arxiv.org/abs/2410.09307v1
- Date: Sat, 12 Oct 2024 00:03:40 GMT
- ステータス: 処理完了
- システム内更新日: 2024-10-30 15:13:33.239435
- Title: Graph Neural Alchemist: An innovative fully modular architecture for time series-to-graph classification
- Title(参考訳): Graph Neural Alchemist: 時系列-グラフ分類のための革新的な完全モジュラーアーキテクチャ
- Authors: Paulo Coelho, Raul Araju, Luís Ramos, Samir Saliba, Renato Vimieiro,
- Abstract要約: 本稿では時系列分類のための新しいグラフニューラルネットワーク(GNN)アーキテクチャを提案する。
時系列を可視グラフとして表現することにより、時系列データ固有の時間的依存関係の両方を符号化することができる。
私たちのアーキテクチャは完全にモジュール化されており、異なるモデルで柔軟な実験を可能にします。
- 参考スコア(独自算出の注目度): 0.0
- License: http://creativecommons.org/licenses/by-nc-sa/4.0/
- Abstract: This paper introduces a novel Graph Neural Network (GNN) architecture for time series classification, based on visibility graph representations. Traditional time series classification methods often struggle with high computational complexity and inadequate capture of spatio-temporal dynamics. By representing time series as visibility graphs, it is possible to encode both spatial and temporal dependencies inherent to time series data, while being computationally efficient. Our architecture is fully modular, enabling flexible experimentation with different models and representations. We employ directed visibility graphs encoded with in-degree and PageRank features to improve the representation of time series, ensuring efficient computation while enhancing the model's ability to capture long-range dependencies in the data. We show the robustness and generalization capability of the proposed architecture across a diverse set of classification tasks and against a traditional model. Our work represents a significant advancement in the application of GNNs for time series analysis, offering a powerful and flexible framework for future research and practical implementations.
- Abstract(参考訳): 本稿では、可視性グラフ表現に基づく時系列分類のための新しいグラフニューラルネットワーク(GNN)アーキテクチャを提案する。
伝統的な時系列分類法は、しばしば高い計算複雑性と時空間力学の不十分な捕獲に苦しむ。
時系列を可視グラフとして表現することにより、時系列データに固有の空間的および時間的依存関係の両方を、計算的に効率よく符号化することができる。
私たちのアーキテクチャは完全にモジュール化されており、異なるモデルと表現で柔軟な実験を可能にします。
In-degree と PageRank の機能をエンコードした有向可視グラフを用い、時系列の表現を改善し、データ内の長距離依存関係をキャプチャするモデルの能力を高めながら、効率的な計算を確実にする。
提案するアーキテクチャのロバスト性と一般化能力は,多様な分類課題と従来のモデルに比較して示す。
我々の研究は、時系列分析にGNNを応用し、将来の研究と実践のための強力で柔軟なフレームワークを提供しています。
関連論文リスト
- TimeGraphs: Graph-based Temporal Reasoning [64.18083371645956]
TimeGraphsは階層的時間グラフとして動的相互作用を特徴付ける新しいアプローチである。
提案手法は,コンパクトなグラフベース表現を用いて相互作用をモデル化し,多種多様な時間スケールでの適応推論を可能にする。
我々は,サッカーシミュレータ,抵抗ゲーム,MOMA人間活動データセットなど,複雑でダイナミックなエージェントインタラクションを持つ複数のデータセット上でTimeGraphsを評価する。
論文 参考訳(メタデータ) (2024-01-06T06:26:49Z) - TimeGNN: Temporal Dynamic Graph Learning for Time Series Forecasting [20.03223916749058]
時系列予測は、科学と工学における重要な現実世界の応用の核心にある。
動的時間グラフ表現を学習するTimeGNNを提案する。
TimeGNNは、他の最先端のグラフベースの手法よりも4倍から80倍高速な推論時間を実現している。
論文 参考訳(メタデータ) (2023-07-27T08:10:19Z) - MTS2Graph: Interpretable Multivariate Time Series Classification with
Temporal Evolving Graphs [1.1756822700775666]
入力代表パターンを抽出・クラスタリングすることで時系列データを解釈する新しいフレームワークを提案する。
UCR/UEAアーカイブの8つのデータセットとHARとPAMデータセットで実験を行います。
論文 参考訳(メタデータ) (2023-06-06T16:24:27Z) - Deep Temporal Graph Clustering [77.02070768950145]
深部時間グラフクラスタリング(GC)のための汎用フレームワークを提案する。
GCは、時間グラフの相互作用シーケンスに基づくバッチ処理パターンに適合するディープクラスタリング技術を導入している。
我々のフレームワークは、既存の時間グラフ学習手法の性能を効果的に向上させることができる。
論文 参考訳(メタデータ) (2023-05-18T06:17:50Z) - TodyNet: Temporal Dynamic Graph Neural Network for Multivariate Time
Series Classification [6.76723360505692]
未定義のグラフ構造を使わずに隠蔽時間依存を抽出できる新しい時間的動的グラフネットワーク(TodyNet)を提案する。
26のUEAベンチマークデータセットの実験は、提案されたTodyNetがMTSCタスクで既存のディープラーニングベースのメソッドより優れていることを示している。
論文 参考訳(メタデータ) (2023-04-11T09:21:28Z) - Learning the Evolutionary and Multi-scale Graph Structure for
Multivariate Time Series Forecasting [50.901984244738806]
時系列の進化的・マルチスケール相互作用をモデル化する方法を示す。
特に、まず、拡張畳み込みと協調して、スケール固有の相関を捉える階層グラフ構造を提供する。
最終的な予測を得るために上記のコンポーネントを統合するために、統合ニューラルネットワークが提供される。
論文 参考訳(メタデータ) (2022-06-28T08:11:12Z) - Learning to Reconstruct Missing Data from Spatiotemporal Graphs with
Sparse Observations [11.486068333583216]
本稿では、欠落したデータポイントを再構築するための効果的なモデル学習の課題に取り組む。
我々は,高度にスパースな観測値の集合を与えられた注意に基づくアーキテクチャのクラスを提案し,時間と空間における点の表現を学習する。
技術状況と比較して、我々のモデルは予測エラーを伝播したり、前方および後方の時間依存性をエンコードするために双方向モデルを必要とすることなくスパースデータを処理します。
論文 参考訳(メタデータ) (2022-05-26T16:40:48Z) - Multivariate Time Series Forecasting with Dynamic Graph Neural ODEs [65.18780403244178]
動的グラフニューラル正規微分方程式(MTGODE)を用いた多変量時系列予測連続モデルを提案する。
具体的には、まず、時間進化するノードの特徴と未知のグラフ構造を持つ動的グラフに多変量時系列を抽象化する。
そして、欠落したグラフトポロジを補完し、空間的および時間的メッセージパッシングを統一するために、ニューラルODEを設計、解決する。
論文 参考訳(メタデータ) (2022-02-17T02:17:31Z) - Multi-Faceted Representation Learning with Hybrid Architecture for Time
Series Classification [16.64345034889185]
SARCoN(Self-Attentive Recurrent Convolutional Networks)と呼ばれるハイブリッドニューラルネットワークを提案する。
SARCoNは、長期記憶ネットワークと自己拡張機構と完全な畳み込みネットワークの合成である。
我々の研究は、時系列分類の理解を深める新しいアングルを提供し、提案したモデルを現実世界のアプリケーションに最適な選択肢とみなす。
論文 参考訳(メタデータ) (2020-12-21T16:42:07Z) - From Static to Dynamic Node Embeddings [61.58641072424504]
本稿では,時間的予測に基づくアプリケーションにグラフストリームデータを活用するための汎用フレームワークを提案する。
提案フレームワークは,適切なグラフ時系列表現を学習するための新しい手法を含む。
トップ3の時間モデルは常に新しい$epsilon$-graphの時系列表現を利用するモデルであることが分かりました。
論文 参考訳(メタデータ) (2020-09-21T16:48:29Z) - Connecting the Dots: Multivariate Time Series Forecasting with Graph
Neural Networks [91.65637773358347]
多変量時系列データに特化して設計された汎用グラフニューラルネットワークフレームワークを提案する。
グラフ学習モジュールを用いて,変数間の一方向関係を自動的に抽出する。
提案手法は,4つのベンチマークデータセットのうち3つにおいて,最先端のベースライン手法よりも優れている。
論文 参考訳(メタデータ) (2020-05-24T04:02:18Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。