Towards Multi-Modal Animal Pose Estimation: An In-Depth Analysis
- URL: http://arxiv.org/abs/2410.09312v1
- Date: Sat, 12 Oct 2024 00:37:07 GMT
- Title: Towards Multi-Modal Animal Pose Estimation: An In-Depth Analysis
- Authors: Qianyi Deng, Oishi Deb, Amir Patel, Christian Rupprecht, Philip Torr, Niki Trigoni, Andrew Markham,
- Abstract summary: Animal pose estimation (APE) aims to locate the animal body parts using a diverse array of sensor and modality inputs.
By evaluating 178 papers since 2013, APE methods are categorised by sensor and modality types, learning paradigms, experimental setup, and application domains.
- Score: 48.57353513938747
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Animal pose estimation (APE) aims to locate the animal body parts using a diverse array of sensor and modality inputs, which is crucial for research across neuroscience, biomechanics, and veterinary medicine. By evaluating 178 papers since 2013, APE methods are categorised by sensor and modality types, learning paradigms, experimental setup, and application domains, presenting detailed analyses of current trends, challenges, and future directions in single- and multi-modality APE systems. The analysis also highlights the transition between human and animal pose estimation. Additionally, 2D and 3D APE datasets and evaluation metrics based on different sensors and modalities are provided. A regularly updated project page is provided here: https://github.com/ChennyDeng/MM-APE.
Related papers
- Of Mice and Pose: 2D Mouse Pose Estimation from Unlabelled Data and
Synthetic Prior [0.7499722271664145]
We propose an approach for estimating 2D mouse body pose from unlabelled images using a synthetically generated empirical pose prior.
We adapt this method to the limb structure of the mouse and generate the empirical prior of 2D poses from a synthetic 3D mouse model.
In experiments on a new mouse video dataset, we evaluate the performance of the approach by comparing pose predictions to a manually obtained ground truth.
arXiv Detail & Related papers (2023-07-25T09:31:55Z) - Multimodal Interactive Lung Lesion Segmentation: A Framework for
Annotating PET/CT Images based on Physiological and Anatomical Cues [16.159693927845975]
Deep learning has enabled the accurate segmentation of various diseases in medical imaging.
These performances, however, typically demand large amounts of manual voxel annotations.
We propose a multimodal interactive segmentation framework that mitigates these issues by combining anatomical and physiological cues from PET/CT data.
arXiv Detail & Related papers (2023-01-24T10:50:45Z) - CNN-Based Action Recognition and Pose Estimation for Classifying Animal
Behavior from Videos: A Survey [0.0]
Action recognition, classifying activities performed by one or more subjects in a trimmed video, forms the basis of many techniques.
Deep learning models for human action recognition have progressed over the last decade.
Recent interest in research that incorporates deep learning-based action recognition for classification has increased.
arXiv Detail & Related papers (2023-01-15T20:54:44Z) - Anatomy-guided domain adaptation for 3D in-bed human pose estimation [62.3463429269385]
3D human pose estimation is a key component of clinical monitoring systems.
We present a novel domain adaptation method, adapting a model from a labeled source to a shifted unlabeled target domain.
Our method consistently outperforms various state-of-the-art domain adaptation methods.
arXiv Detail & Related papers (2022-11-22T11:34:51Z) - APT-36K: A Large-scale Benchmark for Animal Pose Estimation and Tracking [77.87449881852062]
APT-36K is the first large-scale benchmark for animal pose estimation and tracking.
It consists of 2,400 video clips collected and filtered from 30 animal species with 15 frames for each video, resulting in 36,000 frames in total.
We benchmark several representative models on the following three tracks: (1) supervised animal pose estimation on a single frame under intra- and inter-domain transfer learning settings, (2) inter-species domain generalization test for unseen animals, and (3) animal pose estimation with animal tracking.
arXiv Detail & Related papers (2022-06-12T07:18:36Z) - A survey of top-down approaches for human pose estimation [0.0]
State-of-the-art methods implemented with Deep Learning have brought remarkable results in the field of human pose estimation.
This paper aims to provide newcomers with an extensive review of deep learning methods-based 2D images for recognizing the pose of people.
arXiv Detail & Related papers (2022-02-05T23:27:46Z) - TRiPOD: Human Trajectory and Pose Dynamics Forecasting in the Wild [77.59069361196404]
TRiPOD is a novel method for predicting body dynamics based on graph attentional networks.
To incorporate a real-world challenge, we learn an indicator representing whether an estimated body joint is visible/invisible at each frame.
Our evaluation shows that TRiPOD outperforms all prior work and state-of-the-art specifically designed for each of the trajectory and pose forecasting tasks.
arXiv Detail & Related papers (2021-04-08T20:01:00Z) - 3D Human Body Reshaping with Anthropometric Modeling [59.51820187982793]
Reshaping accurate and realistic 3D human bodies from anthropometric parameters poses a fundamental challenge for person identification, online shopping and virtual reality.
Existing approaches for creating such 3D shapes often suffer from complex measurement by range cameras or high-end scanners.
This paper proposes a novel feature-selection-based local mapping technique, which enables automatic anthropometric parameter modeling for each body facet.
arXiv Detail & Related papers (2021-04-05T04:09:39Z) - Deep Learning-Based Human Pose Estimation: A Survey [66.01917727294163]
Human pose estimation has drawn increasing attention during the past decade.
It has been utilized in a wide range of applications including human-computer interaction, motion analysis, augmented reality, and virtual reality.
Recent deep learning-based solutions have achieved high performance in human pose estimation.
arXiv Detail & Related papers (2020-12-24T18:49:06Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.