論文の概要: BANGS: Game-Theoretic Node Selection for Graph Self-Training
- arxiv url: http://arxiv.org/abs/2410.09348v1
- Date: Sat, 12 Oct 2024 03:31:28 GMT
- ステータス: 処理完了
- システム内更新日: 2024-10-30 14:53:51.737992
- Title: BANGS: Game-Theoretic Node Selection for Graph Self-Training
- Title(参考訳): BANGS:グラフ自己学習のためのゲーム理論ノード選択
- Authors: Fangxin Wang, Kay Liu, Sourav Medya, Philip S. Yu,
- Abstract要約: グラフ自己学習は、基礎となるグラフニューラルネットワーク(GNN)モデルをトレーニングするために、ラベルなしデータのセットを反復的に選択する半教師付き学習手法である。
本稿では,ノード選択の目的として,条件付き相互情報とラベル戦略を統一する新しいフレームワークであるBANGSを提案する。
我々のアプローチは、ゲーム理論に基づくもので、ある方法でノードを選択し、ノイズのある目的の下でロバスト性に関する理論的保証を提供する。
- 参考スコア(独自算出の注目度): 39.70859692050266
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Graph self-training is a semi-supervised learning method that iteratively selects a set of unlabeled data to retrain the underlying graph neural network (GNN) model and improve its prediction performance. While selecting highly confident nodes has proven effective for self-training, this pseudo-labeling strategy ignores the combinatorial dependencies between nodes and suffers from a local view of the distribution. To overcome these issues, we propose BANGS, a novel framework that unifies the labeling strategy with conditional mutual information as the objective of node selection. Our approach -- grounded in game theory -- selects nodes in a combinatorial fashion and provides theoretical guarantees for robustness under noisy objective. More specifically, unlike traditional methods that rank and select nodes independently, BANGS considers nodes as a collective set in the self-training process. Our method demonstrates superior performance and robustness across various datasets, base models, and hyperparameter settings, outperforming existing techniques. The codebase is available on https://github.com/fangxin-wang/BANGS .
- Abstract(参考訳): グラフ自己学習は、ラベルなしデータの集合を反復的に選択して、基礎となるグラフニューラルネットワーク(GNN)モデルをトレーニングし、予測性能を向上させる半教師付き学習手法である。
信頼性の高いノードを選択することは、自己学習に有効であることが証明されているが、この擬似ラベル方式は、ノード間の組合せ依存を無視し、分布の局所的なビューに苦しむ。
そこで我々は,ノード選択の目的として,条件付き相互情報とラベル戦略を統一する新しいフレームワークであるBANGSを提案する。
ゲーム理論に基づく我々のアプローチは、組み合わせ方式でノードを選択し、ノイズのある目的の下でロバスト性に関する理論的保証を提供する。
具体的には、独立してノードをランク付けして選択する従来の方法とは異なり、BANGSはノードを自己学習プロセスにおける集合集合とみなしている。
提案手法は, 各種データセット, ベースモデル, ハイパーパラメータ設定において, 優れた性能とロバスト性を示し, 既存の手法よりも優れた性能を示す。
コードベースはhttps://github.com/fangxin-wang/BANGSで公開されている。
関連論文リスト
- Distribution Consistency based Self-Training for Graph Neural Networks
with Sparse Labels [33.89511660654271]
グラフニューラルネットワーク(GNN)のノード分類は重要な課題である
ラベルなしデータの豊富さを活用するための、広く普及しているフレームワークとして、セルフトレーニングが登場した。
本稿では,情報的かつ分散の相違を認識可能な疑似ラベル付きノードを識別する,新しい分散一貫性グラフ自己学習フレームワークを提案する。
論文 参考訳(メタデータ) (2024-01-18T22:07:48Z) - GNN-LoFI: a Novel Graph Neural Network through Localized Feature-based
Histogram Intersection [51.608147732998994]
グラフニューラルネットワークは、グラフベースの機械学習の選択フレームワークになりつつある。
本稿では,古典的メッセージパッシングに代えて,ノード特徴の局所分布を解析するグラフニューラルネットワークアーキテクチャを提案する。
論文 参考訳(メタデータ) (2024-01-17T13:04:23Z) - CSGNN: Conquering Noisy Node labels via Dynamic Class-wise Selection [45.83801634434111]
CSGNNと呼ばれるグラフニューラルネットワークのための新しいクラスワイズ選択法を提案する。
クラス不均衡問題に対処するため,クリーンノードの識別にクラスタリング手法を活用する動的クラスワイズ選択機構を導入する。
暗記効果の概念に基づくノイズラベルの問題を軽減するため、CSGNNはノイズラベルよりもクリーンノードからの学習を優先する。
論文 参考訳(メタデータ) (2023-11-20T00:57:30Z) - Reinforcement Learning for Node Selection in Branch-and-Bound [52.2648997215667]
現在の最先端セレクタは手作りのアンサンブルを使用して、ナイーブなサブノードセレクタと、個々のノードデータに依存する学習ノードセレクタを自動的に切り替える。
孤立ノードではなく木の状態全体を考慮しながら強化学習(RL)を用いる新しいシミュレーション手法を提案する。
論文 参考訳(メタデータ) (2023-09-29T19:55:56Z) - Neural Structured Prediction for Inductive Node Classification [29.908759584092167]
本稿では,ラベル付き学習グラフのモデルを学習し,未ラベルの試験グラフ上でノードラベルを推論するために一般化することを目的とした,帰納的環境におけるノード分類について検討する。
本稿では,両者の利点を組み合わせたSPN(Structured Proxy Network)という新しいアプローチを提案する。
論文 参考訳(メタデータ) (2022-04-15T15:50:27Z) - A Variational Edge Partition Model for Supervised Graph Representation
Learning [51.30365677476971]
本稿では,重なり合うノード群間の相互作用を集約することで,観測されたエッジがどのように生成されるかをモデル化するグラフ生成プロセスを提案する。
それぞれのエッジを複数のコミュニティ固有の重み付きエッジの和に分割し、コミュニティ固有のGNNを定義する。
エッジを異なるコミュニティに分割するGNNベースの推論ネットワーク,これらのコミュニティ固有のGNN,およびコミュニティ固有のGNNを最終分類タスクに組み合わせたGNNベースの予測器を共同で学習するために,変分推論フレームワークを提案する。
論文 参考訳(メタデータ) (2022-02-07T14:37:50Z) - Learning Hierarchical Graph Neural Networks for Image Clustering [81.5841862489509]
本稿では,画像の集合を未知の個数にクラスタリングする方法を学ぶ階層型グラフニューラルネットワーク(GNN)モデルを提案する。
我々の階層的なGNNは、階層の各レベルで予測される連結コンポーネントをマージして、次のレベルで新しいグラフを形成するために、新しいアプローチを用いています。
論文 参考訳(メタデータ) (2021-07-03T01:28:42Z) - Sequential Graph Convolutional Network for Active Learning [53.99104862192055]
逐次グラフ畳み込みネットワーク(GCN)を用いた新しいプールベースアクティブラーニングフレームワークを提案する。
少数のランダムなサンプル画像がシードラベル付き例であるので、グラフのパラメータを学習してラベル付きノードと非ラベル付きノードを区別する。
我々はGCNの特性を利用してラベル付けされたものと十分に異なる未ラベルの例を選択する。
論文 参考訳(メタデータ) (2020-06-18T00:55:10Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。