論文の概要: Neural Structured Prediction for Inductive Node Classification
- arxiv url: http://arxiv.org/abs/2204.07524v1
- Date: Fri, 15 Apr 2022 15:50:27 GMT
- ステータス: 処理完了
- システム内更新日: 2022-04-18 15:03:01.180762
- Title: Neural Structured Prediction for Inductive Node Classification
- Title(参考訳): インダクティブノード分類のための神経構造予測
- Authors: Meng Qu, Huiyu Cai, Jian Tang
- Abstract要約: 本稿では,ラベル付き学習グラフのモデルを学習し,未ラベルの試験グラフ上でノードラベルを推論するために一般化することを目的とした,帰納的環境におけるノード分類について検討する。
本稿では,両者の利点を組み合わせたSPN(Structured Proxy Network)という新しいアプローチを提案する。
- 参考スコア(独自算出の注目度): 29.908759584092167
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: This paper studies node classification in the inductive setting, i.e., aiming
to learn a model on labeled training graphs and generalize it to infer node
labels on unlabeled test graphs. This problem has been extensively studied with
graph neural networks (GNNs) by learning effective node representations, as
well as traditional structured prediction methods for modeling the structured
output of node labels, e.g., conditional random fields (CRFs). In this paper,
we present a new approach called the Structured Proxy Network (SPN), which
combines the advantages of both worlds. SPN defines flexible potential
functions of CRFs with GNNs. However, learning such a model is nontrivial as it
involves optimizing a maximin game with high-cost inference. Inspired by the
underlying connection between joint and marginal distributions defined by
Markov networks, we propose to solve an approximate version of the optimization
problem as a proxy, which yields a near-optimal solution, making learning more
efficient. Extensive experiments on two settings show that our approach
outperforms many competitive baselines.
- Abstract(参考訳): 本論文は, 帰納的環境におけるノード分類, すなわち, ラベル付きトレーニンググラフのモデルを学習し, ラベルなしテストグラフ上のノードラベルの推論に一般化することを目的とする。
この問題は、効率的なノード表現を学習するグラフニューラルネットワーク(GNN)や、条件付きランダムフィールド(CRF)などのノードラベルの構造的出力をモデル化する従来の構造化予測手法で広く研究されている。
本稿では,両世界の利点を組み合わせた構造化プロキシネットワーク(spn)と呼ばれる新しいアプローチを提案する。
SPN は GNN による CRF の柔軟なポテンシャル関数を定義する。
しかし、そのようなモデルを学ぶことは、コストの高い推論で最大化ゲームを最適化することを伴うため、非自明である。
マルコフネットワークが定義するジョイント分布と限界分布との間の基礎的な関係に着想を得て,最適化問題の近似バージョンをプロキシとして解くことを提案する。
2つの設定に関する広範な実験は、我々のアプローチが多くの競合ベースラインを上回ることを示している。
関連論文リスト
- Graph as a feature: improving node classification with non-neural graph-aware logistic regression [2.952177779219163]
Graph-aware Logistic Regression (GLR) はノード分類タスク用に設計された非神経モデルである。
GNNにアクセスできる情報のごく一部しか使わない従来のグラフアルゴリズムとは異なり、提案モデルではノードの特徴とエンティティ間の関係を同時に活用する。
論文 参考訳(メタデータ) (2024-11-19T08:32:14Z) - Sparse Decomposition of Graph Neural Networks [20.768412002413843]
本稿では,集約中に含まれるノード数を削減する手法を提案する。
線形変換された特徴の重み付け和を用いてノード表現の近似を学習し、スパース分解によりこれを実現できる。
提案手法は推論高速化のために設計された他のベースラインよりも優れていることを示す。
論文 参考訳(メタデータ) (2024-10-25T17:52:16Z) - Large Scale Training of Graph Neural Networks for Optimal Markov-Chain Partitioning Using the Kemeny Constant [1.8606770727950463]
我々は,マルコフ連鎖のグラフ分割問題に対処するGNNアーキテクチャをいくつか提案する。
このアプローチは、提案されたパーティショニングがケメニー定数をどの程度変更するかを最小化することを目的としている。
線形層を持つグラフSAGEベースのGNNが、この文脈でより大きく、より表現力に富んだアテンションベースモデルよりも優れていることを示す。
論文 参考訳(メタデータ) (2023-12-22T17:19:50Z) - A GAN Approach for Node Embedding in Heterogeneous Graphs Using Subgraph Sampling [33.50085646298074]
本稿では,グラフニューラルネットワーク (GNN) とGAN (Generative Adrial Network) を組み合わせた新しいフレームワークを提案する。
このフレームワークには高度なエッジ生成と選択モジュールが含まれており、合成ノードとエッジを同時に生成することができる。
論文 参考訳(メタデータ) (2023-12-11T16:52:20Z) - How Expressive are Graph Neural Networks in Recommendation? [17.31401354442106]
グラフニューラルネットワーク(GNN)は、レコメンデーションを含むさまざまなグラフ学習タスクにおいて、優れたパフォーマンスを示している。
近年、GNNの表現性を調査し、メッセージパッシングGNNがWeisfeiler-Lehmanテストと同じくらい強力であることを実証している。
本稿では,GNNがノード間の構造的距離を捉える能力を評価するために,位相的近接度尺度を提案する。
論文 参考訳(メタデータ) (2023-08-22T02:17:34Z) - Relation Embedding based Graph Neural Networks for Handling
Heterogeneous Graph [58.99478502486377]
我々は、同種GNNが不均一グラフを扱うのに十分な能力を持つように、シンプルで効率的なフレームワークを提案する。
具体的には、エッジ型関係と自己ループ接続の重要性を埋め込むために、関係1つのパラメータのみを使用する関係埋め込みベースのグラフニューラルネットワーク(RE-GNN)を提案する。
論文 参考訳(メタデータ) (2022-09-23T05:24:18Z) - Deep Manifold Learning with Graph Mining [80.84145791017968]
グラフマイニングのための非段階的決定層を持つ新しいグラフ深層モデルを提案する。
提案モデルでは,現行モデルと比較して最先端性能を実現している。
論文 参考訳(メタデータ) (2022-07-18T04:34:08Z) - Optimal Propagation for Graph Neural Networks [51.08426265813481]
最適グラフ構造を学習するための二段階最適化手法を提案する。
また、時間的複雑さをさらに軽減するために、低ランク近似モデルについても検討する。
論文 参考訳(メタデータ) (2022-05-06T03:37:00Z) - Contrastive Adaptive Propagation Graph Neural Networks for Efficient
Graph Learning [65.08818785032719]
グラフネットワーク(GNN)は、構造認識特徴の抽出と伝播によってグラフデータの処理に成功している。
近年,地域と高階の双方からなる拡張された隣人を直接扱えるように,近隣住民に焦点を絞った局所的伝播計画から拡張的伝播計画へと発展してきた。
優れた性能にもかかわらず、既存のアプローチは、局所的および高次隣人の影響を適応的に調整できる効率的で学習可能な拡張伝搬スキームを構築するのにはまだ不十分である。
論文 参考訳(メタデータ) (2021-12-02T10:35:33Z) - Cyclic Label Propagation for Graph Semi-supervised Learning [52.102251202186025]
本稿では,CycPropと呼ばれるグラフ半教師付き学習のための新しいフレームワークを提案する。
CycPropはGNNを周期的かつ相互に強化された方法でラベル伝播の過程に統合する。
特に,提案するCycPropでは,GNNモジュールが学習したノード埋め込みをラベル伝搬による拡張情報で更新する。
論文 参考訳(メタデータ) (2020-11-24T02:55:40Z) - Binarized Graph Neural Network [65.20589262811677]
我々は二項化グラフニューラルネットワークを開発し、二項化ネットワークパラメータを用いてノードのバイナリ表現を学習する。
提案手法は既存のGNNベースの埋め込み手法にシームレスに統合できる。
実験により、提案された二項化グラフニューラルネットワーク、すなわちBGNは、時間と空間の両方の観点から、桁違いに効率的であることが示されている。
論文 参考訳(メタデータ) (2020-04-19T09:43:14Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。