論文の概要: Green Recommender Systems: Optimizing Dataset Size for Energy-Efficient Algorithm Performance
- arxiv url: http://arxiv.org/abs/2410.09359v1
- Date: Sat, 12 Oct 2024 04:00:55 GMT
- ステータス: 処理完了
- システム内更新日: 2024-10-30 14:53:51.658520
- Title: Green Recommender Systems: Optimizing Dataset Size for Energy-Efficient Algorithm Performance
- Title(参考訳): グリーンレコメンダシステム:エネルギー効率の良いアルゴリズム性能のためのデータセットサイズ最適化
- Authors: Ardalan Arabzadeh, Tobias Vente, Joeran Beel,
- Abstract要約: 本稿では,データセットサイズを最適化することで,エネルギー効率の高いアルゴリズムの性能向上の可能性について検討する。
MovieLens 100K, 1M, 10M, Amazon Toys and Gamesデータセットで実験を行った。
- 参考スコア(独自算出の注目度): 0.10241134756773229
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: As recommender systems become increasingly prevalent, the environmental impact and energy efficiency of training large-scale models have come under scrutiny. This paper investigates the potential for energy-efficient algorithm performance by optimizing dataset sizes through downsampling techniques in the context of Green Recommender Systems. We conducted experiments on the MovieLens 100K, 1M, 10M, and Amazon Toys and Games datasets, analyzing the performance of various recommender algorithms under different portions of dataset size. Our results indicate that while more training data generally leads to higher algorithm performance, certain algorithms, such as FunkSVD and BiasedMF, particularly with unbalanced and sparse datasets like Amazon Toys and Games, maintain high-quality recommendations with up to a 50% reduction in training data, achieving nDCG@10 scores within approximately 13% of full dataset performance. These findings suggest that strategic dataset reduction can decrease computational and environmental costs without substantially compromising recommendation quality. This study advances sustainable and green recommender systems by providing insights for reducing energy consumption while maintaining effectiveness.
- Abstract(参考訳): 推薦システムがますます普及するにつれて、大規模モデルの訓練における環境影響とエネルギー効率が精査されている。
本稿では,グリーン・レコメンダ・システム(Green Recommender Systems)の文脈におけるダウンサンプリング手法を用いて,データセットサイズを最適化することで,エネルギー効率の高いアルゴリズム性能を実現する可能性について検討する。
The MovieLens 100K, 1M, 10M, and Amazon Toys and Gamesのデータセットで実験を行い、データセットサイズが異なる部分で様々な推奨アルゴリズムのパフォーマンスを分析した。
以上の結果から,FunkSVDやBiasedMFなどのアルゴリズム,特にAmazon ToysやGamesのような不均衡でスパースなデータセットでは,トレーニングデータの最大50%の削減で高品質なレコメンデーションを維持し,nDCG@10スコアを全データセットのパフォーマンスの約13%で達成する,という結果が得られた。
これらの結果から, 戦略的データセットの削減は, 推奨品質を著しく損なうことなく, 計算コストや環境コストを低減できることが示唆された。
本研究は, 有効性を維持しつつ, エネルギー消費削減のための洞察を提供することにより, 持続的, グリーンなレコメンデータシステムを構築した。
関連論文リスト
- Reward-Augmented Data Enhances Direct Preference Alignment of LLMs [56.24431208419858]
報奨条件付き大言語モデル(LLM)を導入し、データセット内の応答品質のスペクトル全体から学習する。
そこで本稿では,品質スコアに優先ペアを条件付け,報酬を加算したデータセットを構築する,効果的なデータレバーベリング手法を提案する。
論文 参考訳(メタデータ) (2024-10-10T16:01:51Z) - Revisiting BPR: A Replicability Study of a Common Recommender System Baseline [78.00363373925758]
我々は,BPRモデルの特徴を考察し,その性能への影響を示し,オープンソースのBPR実装について検討する。
分析の結果,これらの実装とオリジナルのBPR論文の矛盾が明らかとなり,特定の実装に対して最大50%の性能低下がみられた。
BPRモデルは、トップnのレコメンデーションタスクにおける最先端メソッドに近いパフォーマンスレベルを達成でき、特定のデータセット上でもパフォーマンスが向上することを示す。
論文 参考訳(メタデータ) (2024-09-21T18:39:53Z) - An In-Depth Analysis of Data Reduction Methods for Sustainable Deep Learning [0.15833270109954137]
トレーニングデータセットのサイズを減らすために、最大8つの異なる方法を提示します。
また、それらを適用するPythonパッケージも開発しています。
これらのデータ削減手法がデータセットの表現性に与える影響を実験的に比較した。
論文 参考訳(メタデータ) (2024-03-22T12:06:40Z) - EASRec: Elastic Architecture Search for Efficient Long-term Sequential
Recommender Systems [82.76483989905961]
現在のSRS(Sequential Recommender Systems)は、計算とリソースの非効率に悩まされている。
我々は、効率的な長期シーケンスレコメンダシステム(EASRec)のための弾性アーキテクチャー探索を開発する。
EASRecは、入力データバッチから履歴情報を活用するデータ認識ゲートを導入し、レコメンデーションネットワークの性能を改善する。
論文 参考訳(メタデータ) (2024-02-01T07:22:52Z) - Adaptive Resource Allocation for Virtualized Base Stations in O-RAN with
Online Learning [60.17407932691429]
基地局(vBS)を備えたオープンラジオアクセスネットワークシステムは、柔軟性の向上、コスト削減、ベンダーの多様性、相互運用性のメリットを提供する。
本研究では,予期せぬ「混み合う」環境下であっても,効率的なスループットとvBSエネルギー消費のバランスをとるオンライン学習アルゴリズムを提案する。
提案手法は, 課題のある環境においても, 平均最適性ギャップをゼロにすることで, サブ線形後悔を実現する。
論文 参考訳(メタデータ) (2023-09-04T17:30:21Z) - Stochastic Re-weighted Gradient Descent via Distributionally Robust Optimization [14.23697277904244]
Reweighted Gradient Descent (RGD) は、動的サンプル再重み付けによりディープニューラルネットワークの性能を向上させる新しい最適化手法である。
本稿では,教師付き学習,メタラーニング,ドメイン外一般化など,様々な学習課題におけるRGDの有効性を示す。
論文 参考訳(メタデータ) (2023-06-15T15:58:04Z) - CAFE: Learning to Condense Dataset by Aligning Features [72.99394941348757]
本稿ではCAFE(Aligning features)によるCondenseデータセットの新しいスキームを提案する。
このアプローチの核心は、さまざまなスケールにわたる実データと合成データから機能を整合させる効果的な戦略です。
提案したCAFEを様々なデータセットで検証し,概ね最先端技術であることを示す。
論文 参考訳(メタデータ) (2022-03-03T05:58:49Z) - Balancing Performance and Energy Consumption of Bagging Ensembles for
the Classification of Data Streams in Edge Computing [9.801387036837871]
エッジコンピューティング(EC)は、IoT(Internet of Things)や5Gネットワークといったテクノロジを開発する上で可能な要素として登場した。
本研究は,データストリームの分類において,バッグアンサンブルの性能とエネルギー消費を最適化するための戦略を検討する。
論文 参考訳(メタデータ) (2022-01-17T04:12:18Z) - Fine-Grained Data Selection for Improved Energy Efficiency of Federated
Edge Learning [2.924868086534434]
フェデレーションエッジ学習(FEEL)では、ネットワークエッジのエネルギー制約されたデバイスは、ローカル機械学習モデルをトレーニングおよびアップロードする際にかなりのエネルギーを消費する。
本研究は, ローカルトレーニングデータ, 利用可能な計算, 通信資源を共同で検討し, エネルギー効率の高い FEEL の新たなソリューションを提案する。
論文 参考訳(メタデータ) (2021-06-20T10:51:32Z) - SASL: Saliency-Adaptive Sparsity Learning for Neural Network
Acceleration [20.92912642901645]
そこで本稿では、さらなる最適化のために、SASL(Saliency-Adaptive Sparsity Learning)アプローチを提案する。
ResNet-50 の 49.7% の FLOP を 0.39% のトップ-1 と 0.05% のトップ-5 の精度で削減できる。
論文 参考訳(メタデータ) (2020-03-12T16:49:37Z) - Adversarial Filters of Dataset Biases [96.090959788952]
大規模なニューラルモデルでは、言語とビジョンベンチマークで人間レベルのパフォーマンスが実証されている。
それらの性能は、敵対的またはアウト・オブ・ディストリビューションのサンプルで著しく低下する。
このようなデータセットバイアスを逆フィルタするAFLiteを提案する。
論文 参考訳(メタデータ) (2020-02-10T21:59:21Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。