論文の概要: EASRec: Elastic Architecture Search for Efficient Long-term Sequential
Recommender Systems
- arxiv url: http://arxiv.org/abs/2402.00390v1
- Date: Thu, 1 Feb 2024 07:22:52 GMT
- ステータス: 処理完了
- システム内更新日: 2024-02-02 16:15:36.555423
- Title: EASRec: Elastic Architecture Search for Efficient Long-term Sequential
Recommender Systems
- Title(参考訳): EASRec: 効率的な長期シーケンスレコメンダシステムのための弾性アーキテクチャ探索
- Authors: Sheng Zhang, Maolin Wang, Yao Zhao, Chenyi Zhuang, Jinjie Gu, Ruocheng
Guo, Xiangyu Zhao, Zijian Zhang, Hongzhi Yin
- Abstract要約: 現在のSRS(Sequential Recommender Systems)は、計算とリソースの非効率に悩まされている。
我々は、効率的な長期シーケンスレコメンダシステム(EASRec)のための弾性アーキテクチャー探索を開発する。
EASRecは、入力データバッチから履歴情報を活用するデータ認識ゲートを導入し、レコメンデーションネットワークの性能を改善する。
- 参考スコア(独自算出の注目度): 82.76483989905961
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: In this age where data is abundant, the ability to distill meaningful
insights from the sea of information is essential. Our research addresses the
computational and resource inefficiencies that current Sequential Recommender
Systems (SRSs) suffer from. especially those employing attention-based models
like SASRec, These systems are designed for next-item recommendations in
various applications, from e-commerce to social networks. However, such systems
suffer from substantial computational costs and resource consumption during the
inference stage. To tackle these issues, our research proposes a novel method
that combines automatic pruning techniques with advanced model architectures.
We also explore the potential of resource-constrained Neural Architecture
Search (NAS), a technique prevalent in the realm of recommendation systems, to
fine-tune models for reduced FLOPs, latency, and energy usage while retaining
or even enhancing accuracy. The main contribution of our work is developing the
Elastic Architecture Search for Efficient Long-term Sequential Recommender
Systems (EASRec). This approach aims to find optimal compact architectures for
attention-based SRSs, ensuring accuracy retention. EASRec introduces data-aware
gates that leverage historical information from input data batch to improve the
performance of the recommendation network. Additionally, it utilizes a dynamic
resource constraint approach, which standardizes the search process and results
in more appropriate architectures. The effectiveness of our methodology is
validated through exhaustive experiments on three benchmark datasets, which
demonstrates EASRec's superiority in SRSs. Our research set a new standard for
future exploration into efficient and accurate recommender systems, signifying
a substantial advancement within this swiftly advancing field.
- Abstract(参考訳): データが豊富であるこの時代には、情報海から意味のある洞察を抽出する能力が不可欠である。
本研究は,現在SRS(Sequential Recommender Systems)が抱える計算と資源の非効率性について考察する。
これらのシステムは、eコマースからソーシャルネットワークまで、さまざまなアプリケーションにおける次のイテムレコメンデーションのために設計されています。
しかし、これらのシステムは、推論段階での計算コストと資源消費に悩まされている。
そこで本研究では,自動刈り取り技術と高度なモデルアーキテクチャを組み合わせた新しい手法を提案する。
また,レコメンデーションシステムの分野で広く普及する手法であるnas(resource-constrained neural architecture search)の可能性を探究し,フロップ,レイテンシ,エネルギー使用量を減らすためのモデルを精度を維持しつつ微調整する。
私たちの研究の主な貢献は、効率的な長期シーケンスレコメンダシステム(EASRec)のためのElastic Architecture Searchの開発です。
このアプローチは注意に基づくsrssのための最適なコンパクトアーキテクチャを見つけ、正確性を確保することを目的としている。
EASRecは、入力データバッチから履歴情報を活用するデータ認識ゲートを導入し、レコメンデーションネットワークの性能を改善する。
さらに、動的リソース制約アプローチを利用して、検索プロセスを標準化し、より適切なアーキテクチャを実現する。
SRSにおけるEASRecの優位性を示す3つのベンチマークデータセットの徹底的な実験により,本手法の有効性を検証した。
私たちの研究は、効率的で正確なレコメンダシステムへの将来の調査のための新しい標準を設定しました。
関連論文リスト
- Query Optimization for Parametric Knowledge Refinement in Retrieval-Augmented Large Language Models [26.353428245346166]
Extract-Refine-Retrieve-Read (ERRR)フレームワークは、Retrieval-Augmented Generation (RAG)システムにおける事前検索情報ギャップを埋めるように設計されている。
RAGで使用される従来のクエリ最適化手法とは異なり、ERRRフレームワークはLarge Language Models (LLM) から知識を抽出することから始まる。
論文 参考訳(メタデータ) (2024-11-12T14:12:45Z) - Dataset Regeneration for Sequential Recommendation [69.93516846106701]
DR4SRと呼ばれるモデルに依存しないデータセット再生フレームワークを用いて、理想的なトレーニングデータセットを開発するためのデータ中心のパラダイムを提案する。
データ中心のパラダイムの有効性を示すために、我々はフレームワークを様々なモデル中心の手法と統合し、4つの広く採用されているデータセット間で大きなパフォーマンス改善を観察する。
論文 参考訳(メタデータ) (2024-05-28T03:45:34Z) - Efficient Architecture Search via Bi-level Data Pruning [70.29970746807882]
この研究は、DARTSの双方向最適化におけるデータセット特性の重要な役割を探求する先駆者となった。
我々は、スーパーネット予測力学を計量として活用する新しいプログレッシブデータプルーニング戦略を導入する。
NAS-Bench-201サーチスペース、DARTSサーチスペース、MobileNetのようなサーチスペースに関する総合的な評価は、BDPがサーチコストを50%以上削減することを検証する。
論文 参考訳(メタデータ) (2023-12-21T02:48:44Z) - Visual Prompting Upgrades Neural Network Sparsification: A Data-Model Perspective [64.04617968947697]
より優れた重量空間を実現するために、新しいデータモデル共設計視点を導入する。
具体的には、提案したVPNフレームワークでニューラルネットワークのスパーシフィケーションをアップグレードするために、カスタマイズされたVisual Promptが実装されている。
論文 参考訳(メタデータ) (2023-12-03T13:50:24Z) - Re-visiting Reservoir Computing architectures optimized by Evolutionary
Algorithms [0.0]
進化的アルゴリズム(EA)はニューラルネットワーク(NN)アーキテクチャの改善に応用されている。
我々は、Reservoir Computing (RC) という、リカレントNNの特定の領域におけるEAの応用に関する体系的な簡単な調査を行う。
論文 参考訳(メタデータ) (2022-11-11T14:50:54Z) - NASRec: Weight Sharing Neural Architecture Search for Recommender
Systems [40.54254555949057]
NASRecは,1つのスーパーネットをトレーニングし,重量共有により豊富なモデル/サブアーキテクチャを効率的に生成するパラダイムである。
CTR(Click-Through Rates)の3つの予測ベンチマークの結果,NASRecは手動設計モデルと既存のNAS手法の両方より優れていることが示された。
論文 参考訳(メタデータ) (2022-07-14T20:15:11Z) - A Hybrid Framework for Sequential Data Prediction with End-to-End
Optimization [0.0]
オンライン環境での非線形予測について検討し,手作業による特徴や手作業によるモデル選択の問題を効果的に緩和するハイブリッドモデルを提案する。
逐次データからの適応的特徴抽出にはLSTM(Recurrent Neural Network)、効果的な教師付き回帰には勾配強化機構(soft GBDT)を用いる。
本稿では, 合成データに対するアルゴリズムの学習挙動と, 各種実生活データセットに対する従来の手法による性能改善について述べる。
論文 参考訳(メタデータ) (2022-03-25T17:13:08Z) - A novel Deep Neural Network architecture for non-linear system
identification [78.69776924618505]
非線形システム識別のための新しいDeep Neural Network (DNN)アーキテクチャを提案する。
メモリシステムにインスパイアされたインダクティブバイアス(アーキテクチャ)と正規化(損失関数)を導入する。
このアーキテクチャは、利用可能なデータのみに基づいて、自動的な複雑性の選択を可能にする。
論文 参考訳(メタデータ) (2021-06-06T10:06:07Z) - LoRD-Net: Unfolded Deep Detection Network with Low-Resolution Receivers [104.01415343139901]
本稿では,1ビット計測から情報シンボルを復元する「LoRD-Net」というディープ検出器を提案する。
LoRD-Netは、関心のシグナルを回復するためのタスクベースのアーキテクチャである。
無線通信における1ビット信号回復のためのレシーバアーキテクチャの評価を行った。
論文 参考訳(メタデータ) (2021-02-05T04:26:05Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。