3-D Magnetotelluric Deep Learning Inversion Guided by Pseudo-Physical Information
- URL: http://arxiv.org/abs/2410.09388v2
- Date: Fri, 18 Oct 2024 11:23:18 GMT
- Title: 3-D Magnetotelluric Deep Learning Inversion Guided by Pseudo-Physical Information
- Authors: Peifan Jiang, Xuben Wang, Shuang Wang, Fei Deng, Kunpeng Wang, Bin Wang, Yuhan Yang, Islam Fadel,
- Abstract summary: Magnetotelluric deep learning (DL) inversion methods based on joint data-driven and physics-driven have become a hot topic in recent years.
We introduce pseudo-physical information through the forward modeling of neural networks (NNs) to compute this portion of the loss.
We propose a new input mode that involves masking and adding noise to the data, simulating the field data environment of 3-D MT inversion.
- Score: 11.303727578628575
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Magnetotelluric deep learning (DL) inversion methods based on joint data-driven and physics-driven have become a hot topic in recent years. When mapping observation data (or forward modeling data) to the resistivity model using neural networks (NNs), incorporating the error (loss) term of the inversion resistivity's forward modeling response--which introduces physical information about electromagnetic field propagation--can significantly enhance the inversion accuracy. To efficiently achieve data-physical dual-driven MT deep learning inversion for large-scale 3-D MT data, we propose using DL forward modeling networks to compute this portion of the loss. This approach introduces pseudo-physical information through the forward modeling of NN simulation, further guiding the inversion network fitting. Specifically, we first pre-train the forward modeling networks as fixed forward modeling operators, then transfer and integrate them into the inversion network training, and finally optimize the inversion network by minimizing the multinomial loss. Theoretical experimental results indicate that despite some simulation errors in DL forward modeling, the introduced pseudo-physical information still enhances inversion accuracy and significantly mitigates the overfitting problem during training. Additionally, we propose a new input mode that involves masking and adding noise to the data, simulating the field data environment of 3-D MT inversion, thereby making the method more flexible and effective for practical applications.
Related papers
- Enhancing Brain Source Reconstruction through Physics-Informed 3D Neural Networks [17.023015853478043]
We propose the novel hybrid method 3D-PIUNet for EEG source localization.
Our model significantly improves spatial accuracy, demonstrating superior performance over both traditional and end-to-end data-driven methods.
We validate our findings with real EEG data from a visual task, where 3D-PIUNet successfully identifies the visual cortex.
arXiv Detail & Related papers (2024-10-31T18:43:38Z) - Physically Guided Deep Unsupervised Inversion for 1D Magnetotelluric Models [16.91835461818938]
We present a new deep inversion algorithm guided by physics to estimate 1D Magnetotelluric (MT) models.
Our method employs a differentiable modeling operator that physically guides the cost function minimization.
We test the proposed method with field and synthetic data at different frequencies, demonstrating that the acquisition models are more accurate than other results.
arXiv Detail & Related papers (2024-10-20T04:17:59Z) - Equivariant Graph Neural Operator for Modeling 3D Dynamics [148.98826858078556]
We propose Equivariant Graph Neural Operator (EGNO) to directly models dynamics as trajectories instead of just next-step prediction.
EGNO explicitly learns the temporal evolution of 3D dynamics where we formulate the dynamics as a function over time and learn neural operators to approximate it.
Comprehensive experiments in multiple domains, including particle simulations, human motion capture, and molecular dynamics, demonstrate the significantly superior performance of EGNO against existing methods.
arXiv Detail & Related papers (2024-01-19T21:50:32Z) - Assessing Neural Network Representations During Training Using
Noise-Resilient Diffusion Spectral Entropy [55.014926694758195]
Entropy and mutual information in neural networks provide rich information on the learning process.
We leverage data geometry to access the underlying manifold and reliably compute these information-theoretic measures.
We show that they form noise-resistant measures of intrinsic dimensionality and relationship strength in high-dimensional simulated data.
arXiv Detail & Related papers (2023-12-04T01:32:42Z) - Addressing Data Scarcity in Optical Matrix Multiplier Modeling Using
Transfer Learning [0.0]
We present and experimentally evaluate using transfer learning to address experimental data scarcity.
Our approach involves pre-training the model using synthetic data generated from a less accurate analytical model.
We achieve 1 dB root-mean-square error on the matrix weights implemented by a 3x3 photonic chip while using only 25% of the available data.
arXiv Detail & Related papers (2023-08-10T07:33:00Z) - Learning Controllable Adaptive Simulation for Multi-resolution Physics [86.8993558124143]
We introduce Learning controllable Adaptive simulation for Multi-resolution Physics (LAMP) as the first full deep learning-based surrogate model.
LAMP consists of a Graph Neural Network (GNN) for learning the forward evolution, and a GNN-based actor-critic for learning the policy of spatial refinement and coarsening.
We demonstrate that our LAMP outperforms state-of-the-art deep learning surrogate models, and can adaptively trade-off computation to improve long-term prediction error.
arXiv Detail & Related papers (2023-05-01T23:20:27Z) - Deep learning for full-field ultrasonic characterization [7.120879473925905]
This study takes advantage of recent advances in machine learning to establish a physics-based data analytic platform.
Two logics, namely the direct inversion and physics-informed neural networks (PINNs), are explored.
arXiv Detail & Related papers (2023-01-06T05:01:05Z) - Mixed Effects Neural ODE: A Variational Approximation for Analyzing the
Dynamics of Panel Data [50.23363975709122]
We propose a probabilistic model called ME-NODE to incorporate (fixed + random) mixed effects for analyzing panel data.
We show that our model can be derived using smooth approximations of SDEs provided by the Wong-Zakai theorem.
We then derive Evidence Based Lower Bounds for ME-NODE, and develop (efficient) training algorithms.
arXiv Detail & Related papers (2022-02-18T22:41:51Z) - A transfer learning enhanced the physics-informed neural network model
for vortex-induced vibration [0.0]
This paper proposed a transfer learning enhanced the physics-informed neural network (PINN) model to study the VIV (2D)
The physics-informed neural network, when used in conjunction with the transfer learning method, enhances learning efficiency and keeps predictability in the target task by common characteristics knowledge from the source model without requiring a huge quantity of datasets.
arXiv Detail & Related papers (2021-12-29T08:20:23Z) - Data-Driven Shadowgraph Simulation of a 3D Object [50.591267188664666]
We are replacing the numerical code by a computationally cheaper projection based surrogate model.
The model is able to approximate the electric fields at a given time without computing all preceding electric fields as required by numerical methods.
This model has shown a good quality reconstruction in a problem of perturbation of data within a narrow range of simulation parameters and can be used for input data of large size.
arXiv Detail & Related papers (2021-06-01T08:46:04Z) - Probabilistic 3D surface reconstruction from sparse MRI information [58.14653650521129]
We present a novel probabilistic deep learning approach for concurrent 3D surface reconstruction from sparse 2D MR image data and aleatoric uncertainty prediction.
Our method is capable of reconstructing large surface meshes from three quasi-orthogonal MR imaging slices from limited training sets.
arXiv Detail & Related papers (2020-10-05T14:18:52Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.