Text Classification using Graph Convolutional Networks: A Comprehensive Survey
- URL: http://arxiv.org/abs/2410.09399v1
- Date: Sat, 12 Oct 2024 07:03:42 GMT
- Title: Text Classification using Graph Convolutional Networks: A Comprehensive Survey
- Authors: Syed Mustafa Haider Rizvi, Ramsha Imran, Arif Mahmood,
- Abstract summary: Graph convolution network (GCN)-based approaches have gained a lot of traction in this domain over the last decade.
This work aims to summarize and categorize various GCN-based Text Classification approaches with regard to the architecture and mode of supervision.
- Score: 11.1080224302799
- License: http://creativecommons.org/licenses/by-nc-sa/4.0/
- Abstract: Text classification is a quintessential and practical problem in natural language processing with applications in diverse domains such as sentiment analysis, fake news detection, medical diagnosis, and document classification. A sizable body of recent works exists where researchers have studied and tackled text classification from different angles with varying degrees of success. Graph convolution network (GCN)-based approaches have gained a lot of traction in this domain over the last decade with many implementations achieving state-of-the-art performance in more recent literature and thus, warranting the need for an updated survey. This work aims to summarize and categorize various GCN-based Text Classification approaches with regard to the architecture and mode of supervision. It identifies their strengths and limitations and compares their performance on various benchmark datasets. We also discuss future research directions and the challenges that exist in this domain.
Related papers
- Are Large Language Models Good Classifiers? A Study on Edit Intent Classification in Scientific Document Revisions [62.12545440385489]
Large language models (LLMs) have brought substantial advancements in text generation, but their potential for enhancing classification tasks remains underexplored.
We propose a framework for thoroughly investigating fine-tuning LLMs for classification, including both generation- and encoding-based approaches.
We instantiate this framework in edit intent classification (EIC), a challenging and underexplored classification task.
arXiv Detail & Related papers (2024-10-02T20:48:28Z) - Recent Advances in Hierarchical Multi-label Text Classification: A
Survey [11.709847202580505]
Hierarchical multi-label text classification aims to classify the input text into multiple labels, among which the labels are structured and hierarchical.
It is a vital task in many real world applications, e.g. scientific literature archiving.
arXiv Detail & Related papers (2023-07-30T16:13:00Z) - Graph Neural Networks for Text Classification: A Survey [8.414181339242706]
Graph neural network-based models can deal with complex structured text data and exploit global information.
We bring the coverage of methods up to 2023, including corpus-level and document-level graph neural networks.
As well as the technological survey, we look at issues behind and future directions addressed in text classification using graph neural networks.
arXiv Detail & Related papers (2023-04-23T04:21:50Z) - Be More with Less: Hypergraph Attention Networks for Inductive Text
Classification [56.98218530073927]
Graph neural networks (GNNs) have received increasing attention in the research community and demonstrated their promising results on this canonical task.
Despite the success, their performance could be largely jeopardized in practice since they are unable to capture high-order interaction between words.
We propose a principled model -- hypergraph attention networks (HyperGAT) which can obtain more expressive power with less computational consumption for text representation learning.
arXiv Detail & Related papers (2020-11-01T00:21:59Z) - Legal Document Classification: An Application to Law Area Prediction of
Petitions to Public Prosecution Service [6.696983725360808]
This paper proposes the use of NLP techniques for textual classification.
Our main goal is to automate the process of assigning petitions to their respective areas of law.
The best results were obtained with a combination of Word2Vec trained on a domain-specific corpus and a Recurrent Neural Network architecture.
arXiv Detail & Related papers (2020-10-13T18:05:37Z) - Rank over Class: The Untapped Potential of Ranking in Natural Language
Processing [8.637110868126546]
We argue that many tasks which are currently addressed using classification are in fact being shoehorned into a classification mould.
We propose a novel end-to-end ranking approach consisting of a Transformer network responsible for producing representations for a pair of text sequences.
In an experiment on a heavily-skewed sentiment analysis dataset, converting ranking results to classification labels yields an approximately 22% improvement over state-of-the-art text classification.
arXiv Detail & Related papers (2020-09-10T22:18:57Z) - Cross-Domain Facial Expression Recognition: A Unified Evaluation
Benchmark and Adversarial Graph Learning [85.6386289476598]
We develop a novel adversarial graph representation adaptation (AGRA) framework for cross-domain holistic-local feature co-adaptation.
We conduct extensive and fair evaluations on several popular benchmarks and show that the proposed AGRA framework outperforms previous state-of-the-art methods.
arXiv Detail & Related papers (2020-08-03T15:00:31Z) - A Survey on Text Classification: From Shallow to Deep Learning [83.47804123133719]
The last decade has seen a surge of research in this area due to the unprecedented success of deep learning.
This paper fills the gap by reviewing the state-of-the-art approaches from 1961 to 2021.
We create a taxonomy for text classification according to the text involved and the models used for feature extraction and classification.
arXiv Detail & Related papers (2020-08-02T00:09:03Z) - Text Recognition in Real Scenarios with a Few Labeled Samples [55.07859517380136]
Scene text recognition (STR) is still a hot research topic in computer vision field.
This paper proposes a few-shot adversarial sequence domain adaptation (FASDA) approach to build sequence adaptation.
Our approach can maximize the character-level confusion between the source domain and the target domain.
arXiv Detail & Related papers (2020-06-22T13:03:01Z) - Deep Learning Based Text Classification: A Comprehensive Review [75.8403533775179]
We provide a review of more than 150 deep learning based models for text classification developed in recent years.
We also provide a summary of more than 40 popular datasets widely used for text classification.
arXiv Detail & Related papers (2020-04-06T02:00:30Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.