論文の概要: FlatQuant: Flatness Matters for LLM Quantization
- arxiv url: http://arxiv.org/abs/2410.09426v1
- Date: Sat, 12 Oct 2024 08:10:28 GMT
- ステータス: 処理完了
- システム内更新日: 2024-10-30 14:24:23.437796
- Title: FlatQuant: Flatness Matters for LLM Quantization
- Title(参考訳): FlatQuant: LLM量子化における平坦性
- Authors: Yuxuan Sun, Ruikang Liu, Haoli Bai, Han Bao, Kang Zhao, Yuening Li, Jiaxin Hu, Xianzhi Yu, Lu Hou, Chun Yuan, Xin Jiang, Wulong Liu, Jun Yao,
- Abstract要約: 重みとアクティベーションの平坦性を高めるための新しいポストトレーニング量子化手法であるFlatQuantを提案する。
提案手法では,各線形層に配向した最適アフィン変換を,軽量な対象ランタイムを介して数時間で校正する。
推論レイテンシーのために、FlatQuantは、プリ量子化変換によって引き起こされる遅延を、QuatRotの0.26xから単に$textbf0.07x$に減らし、プリフィルの$textbf2.3x$とデコードのための$textbf1.7x$のスピードアップをもたらす。
- 参考スコア(独自算出の注目度): 58.28221892035609
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Recently, quantization has been widely used for the compression and acceleration of large language models~(LLMs). Due to the outliers in LLMs, it is crucial to flatten weights and activations to minimize quantization error with the equally spaced quantization points. Prior research explores various pre-quantization transformations to suppress outliers, such as per-channel scaling and Hadamard transformation. However, we observe that these transformed weights and activations can still remain steep and outspread. In this paper, we propose FlatQuant (Fast and Learnable Affine Transformation), a new post-training quantization approach to enhance flatness of weights and activations. Our approach identifies optimal affine transformations tailored to each linear layer, calibrated in hours via a lightweight objective. To reduce runtime overhead, we apply Kronecker decomposition to the transformation matrices, and fuse all operations in FlatQuant into a single kernel. Extensive experiments show that FlatQuant sets up a new state-of-the-art quantization benchmark. For instance, it achieves less than $\textbf{1}\%$ accuracy drop for W4A4 quantization on the LLaMA-3-70B model, surpassing SpinQuant by $\textbf{7.5}\%$. For inference latency, FlatQuant reduces the slowdown induced by pre-quantization transformation from 0.26x of QuaRot to merely $\textbf{0.07x}$, bringing up to $\textbf{2.3x}$ speedup for prefill and $\textbf{1.7x}$ speedup for decoding, respectively. Code is available at: \url{https://github.com/ruikangliu/FlatQuant}.
- Abstract(参考訳): 近年,大規模言語モデルの圧縮と加速に量子化が広く用いられている。
LLMの外れ値のため、等間隔の量子化点を持つ量子化誤差を最小限に抑えるために、重みとアクティベーションを平らにすることが重要である。
以前の研究では、チャネルごとのスケーリングやアダマール変換といった、外れ値を抑制するための様々な事前量子化変換が検討されていた。
しかし、これらの変化した重量と活性化はいまだに急勾配で拡散している可能性があることを観察する。
本稿では、重みとアクティベーションの平坦性を高めるための新しい学習後量子化手法であるFlatQuant(Fast and Learnable Affine Transformation)を提案する。
提案手法では, 線形層ごとに調整された最適アフィン変換を, 軽量な目的により数時間で調整する。
ランタイムオーバーヘッドを低減するため、変換行列にKronecker分解を適用し、FlatQuantのすべての操作を単一のカーネルに融合する。
大規模な実験は、FlatQuantが新しい最先端の量子化ベンチマークをセットアップしていることを示している。
例えば、LLaMA-3-70BモデルでW4A4量子化の精度低下を$\textbf{1}\%$で達成し、SpinQuantを$\textbf{7.5}\%$で上回る。
推論遅延について、FlatQuantはプリ量子化変換によって引き起こされる遅延をQuaRotの0.26xから単に$\textbf{0.07x}$に減らし、プリフィルの$\textbf{2.3x}$スピードアップと$\textbf{1.7x}$デコードのための$\textbf{1.7x}$スピードアップをもたらす。
コードは: \url{https://github.com/ruikangliu/FlatQuant}で入手できる。
関連論文リスト
- SVDQuant: Absorbing Outliers by Low-Rank Components for 4-Bit Diffusion Models [58.5019443418822]
拡散モデルは高品質な画像を生成するのに非常に効果的であることが証明されている。
これらのモデルが大きくなるにつれて、メモリが大幅に増加し、レイテンシの低下に悩まされる。
本研究では,その重みとアクティベーションを4ビットに定量化し,拡散モデルの高速化を目指す。
論文 参考訳(メタデータ) (2024-11-07T18:59:58Z) - VPTQ: Extreme Low-bit Vector Post-Training Quantization for Large Language Models [11.708250566573334]
大規模言語モデル(LLM)の極低ビット量子化のためのベクトル後学習量子化(VPTQ)を導入する。
VPTQはLLaMA-2で0.01$-$0.34$、Mistral-7Bで0.38$-$0.68$、LLaMA-3で4.41$-$7.34$を2ビットで還元する。
また、モデル精度を高め、モデルをさらに圧縮する残差量子化および外れ値量子化をサポートするためにVPTQを拡張した。
論文 参考訳(メタデータ) (2024-09-25T16:25:45Z) - SpinQuant: LLM quantization with learned rotations [49.07335692298487]
重み、アクティベーション、KVキャッシュに適用された後トレーニング量子化(PTQ)技術は、大規模言語モデル(LLM)のメモリ使用量、レイテンシ、消費電力を大幅に削減する。
我々は、量子化精度を高めつつ、完全精度のトランスフォーマーアーキテクチャにおいて同一の出力をもたらす、適用可能な回転パラメータ化の集合を同定する。
本研究では,学習した回転行列を最適な量子化ネットワーク精度に組み込む新しい手法であるSpinQuantを提案する。
論文 参考訳(メタデータ) (2024-05-26T02:15:49Z) - OAC: Output-adaptive Calibration for Accurate Post-training Quantization [30.115888331426515]
大規模言語モデル(LLM)を圧縮するPTQ(Post-training Quantization)技術が開発されている。
ほとんどのPTQは、キャリブレーションされた層単位で$ell$損失に基づいて量子化誤差を定式化する。
キャリブレーションプロセスにモデル出力を組み込むための出力適応型(OAC)を提案する。
論文 参考訳(メタデータ) (2024-05-23T20:01:17Z) - AffineQuant: Affine Transformation Quantization for Large Language Models [58.45460102764]
ポストトレーニング量子化(PTQ)は、その圧縮効率とトレーニングの文脈における費用対効果により、かなりの関心を集めている。
既存の大規模言語モデル(LLM)のPTQ手法は、事前量子化重みと後量子化重みの間の変換のスケーリングに最適化範囲を制限している。
本稿では,PTQ(AffineQuant)における等価アフィン変換を用いた直接最適化を提唱する。
論文 参考訳(メタデータ) (2024-03-19T08:40:21Z) - FlattenQuant: Breaking Through the Inference Compute-bound for Large
Language Models with Per-tensor Quantization [6.931020818874328]
テンソル内の大きなチャネルを平らにすることでテンソルの最大値を大幅に低減し、最小の精度でテンソル当たりの量子化を実現するFlattenQuantという手法を提案する。
我々の研究は2$times$ speedupと2.3$times$ memory reduction for LLMs with negligible loss in accuracyを達成している。
論文 参考訳(メタデータ) (2024-02-28T02:00:34Z) - OmniQuant: Omnidirectionally Calibrated Quantization for Large Language Models [57.27101446992148]
大規模言語モデル(LLM)は自然言語処理タスクに革命をもたらした。
近年のPTQ法はメモリフットプリントの削減とLLMの計算効率の向上に有効である。
多様な量子化設定において優れた性能を実現するLLMのOmnidirectly calibrated Quantization手法を提案する。
論文 参考訳(メタデータ) (2023-08-25T02:28:35Z) - SmoothQuant: Accurate and Efficient Post-Training Quantization for Large Language Models [14.929695160346276]
大規模言語モデル(LLM)は優れた性能を示すが、計算とメモリ集約性がある。
SmoothQuant, トレーニング不要, 精度保存, 汎用的なポストトレーニング量子化ソリューションを提案する。
最大1.56倍の高速化と2倍のメモリ削減を実現した。
論文 参考訳(メタデータ) (2022-11-18T18:59:33Z) - Direct Quantization for Training Highly Accurate Low Bit-width Deep
Neural Networks [73.29587731448345]
本稿では,低ビット幅重みとアクティベーションで深部畳み込みニューラルネットワークを訓練する2つの新しい手法を提案する。
まず、ビット幅の少ない重みを得るため、既存の方法の多くは、全精度ネットワーク重みで量子化することにより量子化重みを得る。
第二に、低ビット幅のアクティベーションを得るために、既存の作品はすべてのチャネルを等しく考慮する。
論文 参考訳(メタデータ) (2020-12-26T15:21:18Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。