論文の概要: Interpretable Video based Stress Detection with Self-Refine Chain-of-thought Reasoning
- arxiv url: http://arxiv.org/abs/2410.09449v1
- Date: Sat, 12 Oct 2024 09:06:09 GMT
- ステータス: 処理完了
- システム内更新日: 2024-10-30 14:24:23.413598
- Title: Interpretable Video based Stress Detection with Self-Refine Chain-of-thought Reasoning
- Title(参考訳): 自己決定型連鎖推論による解釈可能なビデオベースストレス検出
- Authors: Yi Dai,
- Abstract要約: 本稿では,ビデオベースストレス検出のための新しい解釈可能なアプローチを提案する。
本手法は,ストレスレベルを示すビデオシーケンスから微妙な行動・生理的手がかりを抽出することに焦点を当てる。
我々は、従来のビデオベースストレス検出法と比較して、その優れた性能を示すために、いくつかのパブリックおよびプライベートなデータセットに対するアプローチを評価した。
- 参考スコア(独自算出の注目度): 4.541582055558865
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Stress detection is a critical area of research with significant implications for health monitoring and intervention systems. In this paper, we propose a novel interpretable approach for video-based stress detection, leveraging self-refine chain-of-thought reasoning to enhance both accuracy and transparency in decision-making processes. Our method focuses on extracting subtle behavioral and physiological cues from video sequences that indicate stress levels. By incorporating a chain-of-thought reasoning mechanism, the system refines its predictions iteratively, ensuring that the decision-making process can be traced and explained. The model also learns to self-refine through feedback loops, improving its reasoning capabilities over time. We evaluate our approach on several public and private datasets, demonstrating its superior performance in comparison to traditional video-based stress detection methods. Additionally, we provide comprehensive insights into the interpretability of the model's predictions, making the system highly valuable for applications in both healthcare and human-computer interaction domains.
- Abstract(参考訳): ストレス検出は、健康モニタリングや介入システムに重要な意味を持つ重要な研究領域である。
本稿では, 自己決定連鎖推論を利用して, 意思決定過程における精度と透明性を向上させる, ビデオベースストレス検出のための新しい解釈可能なアプローチを提案する。
本手法は,ストレスレベルを示すビデオシーケンスから微妙な行動・生理的手がかりを抽出することに焦点を当てる。
連鎖推論機構を組み込むことで、システムは予測を反復的に洗練し、意思決定プロセスのトレースと説明を可能にする。
モデルはまた、フィードバックループを通じて自己定義を学び、時間の経過とともに推論能力を改善する。
我々は、従来のビデオベースストレス検出法と比較して、その優れた性能を示すために、いくつかのパブリックおよびプライベートなデータセットに対するアプローチを評価した。
さらに、モデルの予測の解釈可能性に関する総合的な洞察を提供し、医療分野と人間とコンピュータの相互作用領域の両方におけるアプリケーションに非常に価値の高いシステムを提供する。
関連論文リスト
- Unified Causality Analysis Based on the Degrees of Freedom [1.2289361708127877]
本稿では,システム間の因果関係を同定する統一手法を提案する。
システムの自由度を分析することで、私たちのアプローチは因果的影響と隠れた共同設立者の両方についてより包括的な理解を提供する。
この統合されたフレームワークは、理論モデルとシミュレーションを通じて検証され、その堅牢性とより広範な応用の可能性を示す。
論文 参考訳(メタデータ) (2024-10-25T10:57:35Z) - Early stopping by correlating online indicators in neural networks [0.24578723416255746]
本稿では,学習者の学習において過度に適合する現象を識別する新しい手法を提案する。
提案手法は,オンライン指標の収集における時間的相関を利用したものである。
一つの基準に焦点をあてた従来のアプローチとは対照的に、独立性評価の助成を生かしている。
論文 参考訳(メタデータ) (2024-02-04T14:57:20Z) - Interpretable Imitation Learning with Dynamic Causal Relations [65.18456572421702]
得られた知識を有向非巡回因果グラフの形で公開することを提案する。
また、この因果発見プロセスを状態依存的に設計し、潜在因果グラフのダイナミクスをモデル化する。
提案するフレームワークは,動的因果探索モジュール,因果符号化モジュール,予測モジュールの3つの部分から構成され,エンドツーエンドで訓練される。
論文 参考訳(メタデータ) (2023-09-30T20:59:42Z) - Causal Analysis for Robust Interpretability of Neural Networks [0.2519906683279152]
我々は、事前学習されたニューラルネットワークの因果効果を捉えるための頑健な介入に基づく手法を開発した。
分類タスクで訓練された視覚モデルに本手法を適用した。
論文 参考訳(メタデータ) (2023-05-15T18:37:24Z) - A Self-supervised Framework for Improved Data-Driven Monitoring of
Stress via Multi-modal Passive Sensing [7.084068935028644]
ストレス応答の生理的前駆体を追跡するための多モード半教師付きフレームワークを提案する。
本手法は,ウェアラブルデバイスと異なる領域と解像度のマルチモーダルデータの利用を可能にする。
実世界のデータのコーパスを用いて、知覚的ストレスに関するトレーニング実験を行う。
論文 参考訳(メタデータ) (2023-03-24T20:34:46Z) - An Inter-observer consistent deep adversarial training for visual
scanpath prediction [66.46953851227454]
本稿では,軽量なディープニューラルネットワークによるスキャンパス予測のための,サーバ間一貫した対向トレーニング手法を提案する。
我々は、最先端の手法に関して、我々のアプローチの競争力を示す。
論文 参考訳(メタデータ) (2022-11-14T13:22:29Z) - Backprop-Free Reinforcement Learning with Active Neural Generative
Coding [84.11376568625353]
動的環境におけるエラー(バックプロップ)のバックプロパゲーションを伴わない行動駆動型生成モデルの学習のための計算フレームワークを提案する。
我々は、まばらな報酬でも機能するインテリジェントエージェントを開発し、推論として計画の認知理論からインスピレーションを得ている。
我々のエージェントの堅牢な性能は、神経推論と学習のためのバックプロップフリーアプローチがゴール指向の行動を促進するという有望な証拠を提供する。
論文 参考訳(メタデータ) (2021-07-10T19:02:27Z) - Proactive Pseudo-Intervention: Causally Informed Contrastive Learning
For Interpretable Vision Models [103.64435911083432]
PPI(Proactive Pseudo-Intervention)と呼ばれる新しい対照的な学習戦略を提案する。
PPIは、因果関係のない画像の特徴を保護するために積極的に介入する。
また,重要な画像画素を識別するための,因果的に通知された新たなサリエンスマッピングモジュールを考案し,モデル解釈の容易性を示す。
論文 参考訳(メタデータ) (2020-12-06T20:30:26Z) - An Uncertainty-based Human-in-the-loop System for Industrial Tool Wear
Analysis [68.8204255655161]
人間のループシステムにおけるモンテカルロのドロップアウトに基づく不確実性対策により,システムの透明性と性能が向上することを示す。
シミュレーション研究により、不確実性に基づく「ループ内人間システム」は、様々なレベルの人間の関与に対する性能を高めることが示されている。
論文 参考訳(メタデータ) (2020-07-14T15:47:37Z) - Untangling tradeoffs between recurrence and self-attention in neural
networks [81.30894993852813]
本稿では,再帰的ネットワークにおける自己注意が勾配伝播に与える影響を公式に分析する。
長期的な依存関係を捉えようとするとき、勾配をなくすことの問題を緩和することを証明する。
本稿では,スパース自己アテンションを反復的にスケーラブルに利用するための関連性スクリーニング機構を提案する。
論文 参考訳(メタデータ) (2020-06-16T19:24:25Z) - Calibrating Healthcare AI: Towards Reliable and Interpretable Deep
Predictive Models [41.58945927669956]
これらの2つの目的は必ずしも相違するものではなく、予測キャリブレーションを利用して両方の目的を満たすことを提案する。
本手法はキャリブレーション駆動型学習法により構成され, 対実的推論に基づく解釈可能性手法の設計にも用いられている。
論文 参考訳(メタデータ) (2020-04-27T22:15:17Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。