論文の概要: Unified Causality Analysis Based on the Degrees of Freedom
- arxiv url: http://arxiv.org/abs/2410.19469v1
- Date: Fri, 25 Oct 2024 10:57:35 GMT
- ステータス: 翻訳完了
- システム内更新日: 2024-10-28 13:37:06.069754
- Title: Unified Causality Analysis Based on the Degrees of Freedom
- Title(参考訳): 自由度に基づく統一因果解析
- Authors: András Telcs, Marcell T. Kurbucz, Antal Jakovác,
- Abstract要約: 本稿では,システム間の因果関係を同定する統一手法を提案する。
システムの自由度を分析することで、私たちのアプローチは因果的影響と隠れた共同設立者の両方についてより包括的な理解を提供する。
この統合されたフレームワークは、理論モデルとシミュレーションを通じて検証され、その堅牢性とより広範な応用の可能性を示す。
- 参考スコア(独自算出の注目度): 1.2289361708127877
- License:
- Abstract: Temporally evolving systems are typically modeled by dynamic equations. A key challenge in accurate modeling is understanding the causal relationships between subsystems, as well as identifying the presence and influence of unobserved hidden drivers on the observed dynamics. This paper presents a unified method capable of identifying fundamental causal relationships between pairs of systems, whether deterministic or stochastic. Notably, the method also uncovers hidden common causes beyond the observed variables. By analyzing the degrees of freedom in the system, our approach provides a more comprehensive understanding of both causal influence and hidden confounders. This unified framework is validated through theoretical models and simulations, demonstrating its robustness and potential for broader application.
- Abstract(参考訳): 時相進化系は典型的には動的方程式によってモデル化される。
正確なモデリングにおける重要な課題は、サブシステム間の因果関係を理解することと、観測されたダイナミックスに対する観測されていない隠れドライバの存在と影響を特定することである。
本稿では,一対のシステム間の因果関係を決定的・確率的に同定できる統一手法を提案する。
特に、この方法は観察された変数以外の隠れた共通原因も明らかにする。
システムの自由度を分析することで、私たちのアプローチは因果的影響と隠れた共同設立者の両方についてより包括的な理解を提供する。
この統合されたフレームワークは、理論モデルとシミュレーションを通じて検証され、その堅牢性とより広範な応用の可能性を示す。
関連論文リスト
- Identifiability Analysis of Linear ODE Systems with Hidden Confounders [45.14890063421295]
本稿では,隠れた共同設立者を組み込んだ線形ODEシステムにおける識別可能性の体系的解析について述べる。
最初のケースでは、潜伏した共同設立者は因果関係を示さないが、その進化は特定の形態に固執する。
その後、この分析を、隠れた共同創設者が因果依存性を示すシナリオにまで拡張する。
論文 参考訳(メタデータ) (2024-10-29T10:15:56Z) - Identifiable Representation and Model Learning for Latent Dynamic Systems [0.0]
本稿では,潜在力学系における表現とモデル学習の問題について検討する。
線形あるいはアフィン非線形潜在力学系に対して、スケーリングまでの表現を同定し、いくつかの単純な変換までモデルを決定できることを証明した。
論文 参考訳(メタデータ) (2024-10-23T13:55:42Z) - Systems with Switching Causal Relations: A Meta-Causal Perspective [18.752058058199847]
エージェントの行動の柔軟性や、環境プロセスにおける転換点の柔軟性は、システムの質的なダイナミクスを変える可能性がある。
新しい因果関係が出現し、既存の因果関係が変化または消失し、結果として因果グラフが変化する。
本稿では,古典的因果モデルを等価な定性行動に基づいてクラスタに分類するメタ因果状態の概念を提案する。
論文 参考訳(メタデータ) (2024-10-16T21:32:31Z) - Sequential Representation Learning via Static-Dynamic Conditional Disentanglement [58.19137637859017]
本稿では,ビデオ中の時間非依存要因と時間変化要因を分離することに着目し,逐次的データ内での自己教師付き不整合表現学習について検討する。
本稿では,静的/動的変数間の因果関係を明示的に考慮し,それらの因子間の通常の独立性仮定を破る新しいモデルを提案する。
実験により、提案手法は、シーンのダイナミックスが内容に影響されるシナリオにおいて、従来の複雑な最先端技術よりも優れていることが示された。
論文 参考訳(メタデータ) (2024-08-10T17:04:39Z) - Data driven modeling for self-similar dynamics [1.0790314700764785]
本稿では,自己相似性を先行知識として組み込んだマルチスケールニューラルネットワークフレームワークを提案する。
決定論的ダイナミクスの場合、我々のフレームワークは力学が自己相似かどうかを識別できる。
本手法は,自己相似システムにおける電力法指数を同定する。
論文 参考訳(メタデータ) (2023-10-12T12:39:08Z) - Interpretable Imitation Learning with Dynamic Causal Relations [65.18456572421702]
得られた知識を有向非巡回因果グラフの形で公開することを提案する。
また、この因果発見プロセスを状態依存的に設計し、潜在因果グラフのダイナミクスをモデル化する。
提案するフレームワークは,動的因果探索モジュール,因果符号化モジュール,予測モジュールの3つの部分から構成され,エンドツーエンドで訓練される。
論文 参考訳(メタデータ) (2023-09-30T20:59:42Z) - Identifying Weight-Variant Latent Causal Models [82.14087963690561]
推移性は潜在因果表現の識別性を阻害する重要な役割を担っている。
いくつかの軽微な仮定の下では、潜伏因果表現が自明な置換とスケーリングまで特定可能であることを示すことができる。
本稿では,その間の因果関係や因果関係を直接学習する構造的caUsAl変分自動エンコーダを提案する。
論文 参考訳(メタデータ) (2022-08-30T11:12:59Z) - Disentangling Observed Causal Effects from Latent Confounders using
Method of Moments [67.27068846108047]
我々は、軽度の仮定の下で、識別性と学習可能性に関する保証を提供する。
我々は,線形制約付き結合テンソル分解に基づく効率的なアルゴリズムを開発し,スケーラブルで保証可能な解を得る。
論文 参考訳(メタデータ) (2021-01-17T07:48:45Z) - Causal Discovery in Physical Systems from Videos [123.79211190669821]
因果発見は人間の認知の中心にある。
本研究では,ビデオの因果発見の課題を,地層構造を監督せずにエンドツーエンドで検討する。
論文 参考訳(メタデータ) (2020-07-01T17:29:57Z) - End-to-End Models for the Analysis of System 1 and System 2 Interactions
based on Eye-Tracking Data [99.00520068425759]
本稿では,よく知られたStroopテストの視覚的修正版において,様々なタスクと潜在的な競合事象を特定するための計算手法を提案する。
統計的分析により、選択された変数は、異なるシナリオにおける注意負荷の変動を特徴付けることができることが示された。
機械学習技術は,異なるタスクを分類精度良く区別できることを示す。
論文 参考訳(メタデータ) (2020-02-03T17:46:13Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。