Fine-grained subjective visual quality assessment for high-fidelity compressed images
- URL: http://arxiv.org/abs/2410.09501v1
- Date: Sat, 12 Oct 2024 11:37:19 GMT
- Title: Fine-grained subjective visual quality assessment for high-fidelity compressed images
- Authors: Michela Testolina, Mohsen Jenadeleh, Shima Mohammadi, Shaolin Su, Joao Ascenso, Touradj Ebrahimi, Jon Sneyers, Dietmar Saupe,
- Abstract summary: The JPEG standardization project AIC is developing a subjective image quality assessment methodology for high-fidelity images.
This paper presents the proposed assessment methods, a dataset of high-quality compressed images, and their corresponding crowdsourced visual quality ratings.
It also outlines a data analysis approach that reconstructs quality scale values in just noticeable difference (JND) units.
- Score: 4.787528476079247
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Advances in image compression, storage, and display technologies have made high-quality images and videos widely accessible. At this level of quality, distinguishing between compressed and original content becomes difficult, highlighting the need for assessment methodologies that are sensitive to even the smallest visual quality differences. Conventional subjective visual quality assessments often use absolute category rating scales, ranging from ``excellent'' to ``bad''. While suitable for evaluating more pronounced distortions, these scales are inadequate for detecting subtle visual differences. The JPEG standardization project AIC is currently developing a subjective image quality assessment methodology for high-fidelity images. This paper presents the proposed assessment methods, a dataset of high-quality compressed images, and their corresponding crowdsourced visual quality ratings. It also outlines a data analysis approach that reconstructs quality scale values in just noticeable difference (JND) units. The assessment method uses boosting techniques on visual stimuli to help observers detect compression artifacts more clearly. This is followed by a rescaling process that adjusts the boosted quality values back to the original perceptual scale. This reconstruction yields a fine-grained, high-precision quality scale in JND units, providing more informative results for practical applications. The dataset and code to reproduce the results will be available at https://github.com/jpeg-aic/dataset-BTC-PTC-24.
Related papers
- Dual-Representation Interaction Driven Image Quality Assessment with Restoration Assistance [11.983231834400698]
No-Reference Image Quality Assessment for distorted images has always been a challenging problem due to image content variance and distortion diversity.
Previous IQA models mostly encode explicit single-quality features of synthetic images to obtain quality-aware representations for quality score prediction.
We introduce the DRI method to obtain degradation vectors and quality vectors of images, which separately model the degradation and quality information of low-quality images.
arXiv Detail & Related papers (2024-11-26T12:48:47Z) - Compressed image quality assessment using stacking [4.971244477217376]
Generalization can be regarded as the major challenge in compressed image quality assessment.
Both semantic and low-level information are employed in the presented IQA to predict the human visual system.
The accuracy of the quality benchmark of the clic2024 perceptual image challenge was achieved 79.6%.
arXiv Detail & Related papers (2024-02-01T20:12:26Z) - PIQI: Perceptual Image Quality Index based on Ensemble of Gaussian
Process Regression [2.9412539021452715]
Perceptual Image Quality Index (PIQI) is proposed to assess the quality of digital images.
The performance of the PIQI is checked on six benchmark databases and compared with twelve state-of-the-art methods.
arXiv Detail & Related papers (2023-05-16T06:44:17Z) - Helping Visually Impaired People Take Better Quality Pictures [52.03016269364854]
We develop tools to help visually impaired users minimize occurrences of common technical distortions.
We also create a prototype feedback system that helps to guide users to mitigate quality issues.
arXiv Detail & Related papers (2023-05-14T04:37:53Z) - Confusing Image Quality Assessment: Towards Better Augmented Reality
Experience [96.29124666702566]
We consider AR technology as the superimposition of virtual scenes and real scenes, and introduce visual confusion as its basic theory.
A ConFusing Image Quality Assessment (CFIQA) database is established, which includes 600 reference images and 300 distorted images generated by mixing reference images in pairs.
An objective metric termed CFIQA is also proposed to better evaluate the confusing image quality.
arXiv Detail & Related papers (2022-04-11T07:03:06Z) - Non-Reference Quality Monitoring of Digital Images using Gradient
Statistics and Feedforward Neural Networks [0.1657441317977376]
A non-reference quality metric is proposed to assess the quality of digital images.
The proposed metric is computationally faster than its counterparts and can be used for the quality assessment of image sequences.
arXiv Detail & Related papers (2021-12-27T20:21:55Z) - Image Quality Assessment using Contrastive Learning [50.265638572116984]
We train a deep Convolutional Neural Network (CNN) using a contrastive pairwise objective to solve the auxiliary problem.
We show through extensive experiments that CONTRIQUE achieves competitive performance when compared to state-of-the-art NR image quality models.
Our results suggest that powerful quality representations with perceptual relevance can be obtained without requiring large labeled subjective image quality datasets.
arXiv Detail & Related papers (2021-10-25T21:01:00Z) - Learning Conditional Knowledge Distillation for Degraded-Reference Image
Quality Assessment [157.1292674649519]
We propose a practical solution named degraded-reference IQA (DR-IQA)
DR-IQA exploits the inputs of IR models, degraded images, as references.
Our results can even be close to the performance of full-reference settings.
arXiv Detail & Related papers (2021-08-18T02:35:08Z) - Early Exit or Not: Resource-Efficient Blind Quality Enhancement for
Compressed Images [54.40852143927333]
Lossy image compression is pervasively conducted to save communication bandwidth, resulting in undesirable compression artifacts.
We propose a resource-efficient blind quality enhancement (RBQE) approach for compressed images.
Our approach can automatically decide to terminate or continue enhancement according to the assessed quality of enhanced images.
arXiv Detail & Related papers (2020-06-30T07:38:47Z) - Quantization Guided JPEG Artifact Correction [69.04777875711646]
We develop a novel architecture for artifact correction using the JPEG files quantization matrix.
This allows our single model to achieve state-of-the-art performance over models trained for specific quality settings.
arXiv Detail & Related papers (2020-04-17T00:10:08Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.