論文の概要: Eco-Aware Graph Neural Networks for Sustainable Recommendations
- arxiv url: http://arxiv.org/abs/2410.09514v1
- Date: Sat, 12 Oct 2024 12:26:04 GMT
- ステータス: 処理完了
- システム内更新日: 2024-10-30 14:04:51.725233
- Title: Eco-Aware Graph Neural Networks for Sustainable Recommendations
- Title(参考訳): 持続可能なレコメンデーションのためのEco-Aware Graph Neural Networks
- Authors: Antonio Purificato, Fabrizio Silvestri,
- Abstract要約: グラフニューラルネットワーク(GNN)は、レコメンダシステムにとって有望なアプローチとして登場した。
本研究では,GNNベースのレコメンデーションシステムの環境影響について検討する。
- 参考スコア(独自算出の注目度): 5.829910985081357
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Recommender systems play a crucial role in alleviating information overload by providing personalized recommendations tailored to users' preferences and interests. Recently, Graph Neural Networks (GNNs) have emerged as a promising approach for recommender systems, leveraging their ability to effectively capture complex relationships and dependencies between users and items by representing them as nodes in a graph structure. In this study, we investigate the environmental impact of GNN-based recommender systems, an aspect that has been largely overlooked in the literature. Specifically, we conduct a comprehensive analysis of the carbon emissions associated with training and deploying GNN models for recommendation tasks. We evaluate the energy consumption and carbon footprint of different GNN architectures and configurations, considering factors such as model complexity, training duration, hardware specifications and embedding size. By addressing the environmental impact of resource-intensive algorithms in recommender systems, this study contributes to the ongoing efforts towards sustainable and responsible artificial intelligence, promoting the development of eco-friendly recommendation technologies that balance performance and environmental considerations. Code is available at: https://github.com/antoniopurificato/gnn_recommendation_and_environment.
- Abstract(参考訳): リコメンダシステムは、ユーザの好みや関心に合わせたパーソナライズされたレコメンデーションを提供することによって、情報の過負荷を軽減する上で重要な役割を果たす。
近年,グラフニューラルネットワーク(GNN)は,ユーザとアイテム間の複雑な関係や依存関係を,グラフ構造内のノードとして表現することで効果的にキャプチャする能力を活用して,レコメンダシステムに有望なアプローチとして出現している。
本研究では,GNNをベースとしたレコメンデーションシステムの環境影響について検討する。
具体的には、GNNモデルのトレーニングおよびデプロイに関連する炭素排出量の包括的分析を行い、リコメンデーションタスクを行う。
モデル複雑度,トレーニング期間,ハードウェア仕様,組込みサイズなどの要因を考慮し,異なるGNNアーキテクチャと構成のエネルギー消費と炭素フットプリントを評価した。
推薦システムにおける資源集約型アルゴリズムの環境影響に対処することにより、持続的で責任ある人工知能への継続的な取り組みに寄与し、パフォーマンスと環境配慮のバランスをとるエコフレンドリーなレコメンデーション技術の開発を促進する。
コードは、https://github.com/antoniopurificato/gnn_recommendation_and_environmentで入手できる。
関連論文リスト
- Linear-Time Graph Neural Networks for Scalable Recommendations [50.45612795600707]
推薦システムの鍵は、過去のユーザとイテムのインタラクションに基づいて、ユーザの将来の振る舞いを予測することである。
近年、リコメンデータシステムの予測性能を高めるためにグラフニューラルネットワーク(GNN)を活用することへの関心が高まっている。
我々は,従来のMF手法と同等のスケーラビリティを実現するために,GNNベースのレコメンデータシステムをスケールアップするための線形時間グラフニューラルネットワーク(LTGNN)を提案する。
論文 参考訳(メタデータ) (2024-02-21T17:58:10Z) - EASRec: Elastic Architecture Search for Efficient Long-term Sequential
Recommender Systems [82.76483989905961]
現在のSRS(Sequential Recommender Systems)は、計算とリソースの非効率に悩まされている。
我々は、効率的な長期シーケンスレコメンダシステム(EASRec)のための弾性アーキテクチャー探索を開発する。
EASRecは、入力データバッチから履歴情報を活用するデータ認識ゲートを導入し、レコメンデーションネットワークの性能を改善する。
論文 参考訳(メタデータ) (2024-02-01T07:22:52Z) - Soil Organic Carbon Estimation from Climate-related Features with Graph
Neural Network [0.0]
土壌有機炭素(SOC)は、地球規模の炭素循環において重要な役割を担い、気候動態に影響し、持続可能な土地と農業管理の正確な評価を必要とする。
最近の技術ソリューションは、リモートセンシング、機械学習、高解像度衛星マッピングを利用する。
本研究では, 土壌と気候の複雑な関係を捉えるために, 位置エンコーダの4つのGNN演算子を比較した。
その結果, PESAGEモデルとPETransformerモデルは, SOC推定において他のモデルよりも優れており, SOCと気候特性の複雑な関係を捉える可能性が示唆された。
論文 参考訳(メタデータ) (2023-11-27T16:25:12Z) - Unveiling Optimal SDG Pathways: An Innovative Approach Leveraging Graph
Pruning and Intent Graph for Effective Recommendations [12.444301825257071]
本稿では,Pruning and Intent Graph (UGPIG) 後のユーザグラフという手法を提案する。
まず,プルーニングされたユーザグラフの高密度リンク機能を利用して,推薦アルゴリズムにおける空間無視の問題に対処する。
次に、目的領域の環境要素を含む属性の嗜好をキャプチャするインテントネットワークを組み込むことで、インテントグラフを構築する。
論文 参考訳(メタデータ) (2023-09-21T02:32:17Z) - A Comparative Study of Machine Learning Algorithms for Anomaly Detection
in Industrial Environments: Performance and Environmental Impact [62.997667081978825]
本研究は,環境の持続可能性を考慮した高性能機械学習モデルの要求に応えることを目的としている。
Decision TreesやRandom Forestsといった従来の機械学習アルゴリズムは、堅牢な効率性とパフォーマンスを示している。
しかし, 資源消費の累積増加にもかかわらず, 最適化された構成で優れた結果が得られた。
論文 参考訳(メタデータ) (2023-07-01T15:18:00Z) - DEGREE: Decomposition Based Explanation For Graph Neural Networks [55.38873296761104]
我々は,GNN予測に対する忠実な説明を提供するためにDGREEを提案する。
GNNの情報生成と集約機構を分解することにより、DECREEは入力グラフの特定のコンポーネントのコントリビューションを最終的な予測に追跡することができる。
また,従来の手法で見過ごされるグラフノード間の複雑な相互作用を明らかにするために,サブグラフレベルの解釈アルゴリズムを設計する。
論文 参考訳(メタデータ) (2023-05-22T10:29:52Z) - Ecosystem Graphs: The Social Footprint of Foundation Models [64.02855828418608]
このエコシステムの知識を透過的に集中化するためのドキュメンテーションフレームワークとして,Ecosystem Graphsを提案する。
Ecosystem Graphs は、技術的(例えば Bing は GPT-4 に依存している)と社会的(例えば Microsoft は OpenAI に依存している)の関係を示す依存関係によってリンクされた資産(データセット、モデル、アプリケーション)で構成されている。
論文 参考訳(メタデータ) (2023-03-28T07:18:29Z) - Dual Policy Learning for Aggregation Optimization in Graph Neural
Network-based Recommender Systems [4.026354668375411]
本稿では,リコメンデータシステムのための新しい強化学習型メッセージパッシングフレームワークを提案する。
このフレームワークは2つのポリシー学習を用いてユーザやアイテムを集約する高次接続を適応的に決定する。
提案手法は,NDCGとリコールを最大63.7%,42.9%改善する。
論文 参考訳(メタデータ) (2023-02-21T09:47:27Z) - DSKReG: Differentiable Sampling on Knowledge Graph for Recommendation
with Relational GNN [59.160401038969795]
我々は,GNN(DSKReG)を用いた推薦のための知識グラフの識別可能なサンプリングを提案する。
そこで本研究では,モデル学習手順と組み合わせて,関連する項目の選択を最適化する,識別可能なサンプリング戦略を考案する。
実験の結果,我々のモデルは最先端のKGベースのレコメンデータシステムよりも優れていた。
論文 参考訳(メタデータ) (2021-08-26T16:19:59Z) - Graph Trend Networks for Recommendations [34.06649831739749]
推薦システムの鍵は、ユーザーが過去のオンライン行動に基づいてアイテムと対話する可能性を予測することである。
これらのユーザ-イテム相互作用を利用するために、ユーザ-イテム相互作用をユーザ-イテム二部グラフとして考慮する取り組みが増えている。
彼らの成功にもかかわらず、既存のGNNベースのレコメンデーターシステムは、信頼できない振る舞いによって引き起こされる相互作用を見逃している。
本稿では,グラフトレンドネットワークによるレコメンデーション(GTN)を提案する。
論文 参考訳(メタデータ) (2021-08-12T06:09:18Z) - Graph Neural Networks in Recommender Systems: A Survey [21.438347815928918]
推薦システムでは、インタラクションとサイド情報から効果的なユーザ/イテム表現を学習することが主な課題である。
近年,グラフニューラルネットワーク(GNN)技術はリコメンデータシステムで広く利用されている。
本稿は、GNNベースのレコメンデータシステムに関する最近の研究成果を包括的にレビューすることを目的としている。
論文 参考訳(メタデータ) (2020-11-04T12:57:47Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。