論文の概要: GETS: Ensemble Temperature Scaling for Calibration in Graph Neural Networks
- arxiv url: http://arxiv.org/abs/2410.09570v1
- Date: Sat, 12 Oct 2024 15:34:41 GMT
- ステータス: 処理完了
- システム内更新日: 2024-10-30 13:45:15.621877
- Title: GETS: Ensemble Temperature Scaling for Calibration in Graph Neural Networks
- Title(参考訳): GETS: グラフニューラルネットワークにおけるキャリブレーションのためのアンサンブル温度スケーリング
- Authors: Dingyi Zhuang, Chonghe Jiang, Yunhan Zheng, Shenhao Wang, Jinhua Zhao,
- Abstract要約: グラフニューラルネットワークは強力な分類結果を提供するが、しばしばキャリブレーション性能の低下に悩まされ、自信過剰や自信不足につながる。
温度スケーリングのような既存のポストホック法はグラフ構造を効果的に利用できないが、現在のGNNキャリブレーション法は様々な入力情報とモデルアンサンブルを併用する可能性をしばしば見落としている。
本稿では,10GNNベンチマークデータセットに対して予測キャリブレーション誤差を25%低減し,入力とモデルのアンサンブル戦略を組み合わせた新しいキャリブレーションフレームワークであるGraph Ensemble TemperatureScalingを提案する。
- 参考スコア(独自算出の注目度): 8.505932176266368
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Graph Neural Networks deliver strong classification results but often suffer from poor calibration performance, leading to overconfidence or underconfidence. This is particularly problematic in high stakes applications where accurate uncertainty estimates are essential. Existing post hoc methods, such as temperature scaling, fail to effectively utilize graph structures, while current GNN calibration methods often overlook the potential of leveraging diverse input information and model ensembles jointly. In the paper, we propose Graph Ensemble Temperature Scaling, a novel calibration framework that combines input and model ensemble strategies within a Graph Mixture of Experts archi SOTA calibration techniques, reducing expected calibration error by 25 percent across 10 GNN benchmark datasets. Additionally, GETS is computationally efficient, scalable, and capable of selecting effective input combinations for improved calibration performance.
- Abstract(参考訳): グラフニューラルネットワークは強力な分類結果を提供するが、しばしばキャリブレーション性能の低下に悩まされ、自信過剰や自信不足につながる。
これは、正確な不確実性推定が不可欠である高い利害関係のアプリケーションでは特に問題となる。
温度スケーリングのような既存のポストホック法はグラフ構造を効果的に利用できないが、現在のGNNキャリブレーション法は様々な入力情報とモデルアンサンブルを併用する可能性をしばしば見落としている。
本稿では,10GNNベンチマークデータセットにおいて,入力とモデルアンサンブル戦略を組み合わせた新たなキャリブレーションフレームワークであるGraph Ensemble Temperature Scalingを提案し,キャリブレーション誤差を25%低減する。
さらに、GETSは計算効率が良く、スケーラブルで、キャリブレーション性能を向上させる効果的な入力の組み合わせを選択することができる。
関連論文リスト
- Decoupling Feature Extraction and Classification Layers for Calibrated Neural Networks [3.5284544394841117]
過度にパラメータ化されたDNNアーキテクチャにおける特徴抽出層と分類層の訓練を分離することで、モデルの校正が大幅に向上することを示す。
本稿では,複数の画像分類ベンチマークデータセットに対して,VTおよびWRNアーキテクチャ間のキャリブレーションを改善する手法を提案する。
論文 参考訳(メタデータ) (2024-05-02T11:36:17Z) - Learning to Reweight for Graph Neural Network [63.978102332612906]
グラフニューラルネットワーク(GNN)は、グラフタスクに対して有望な結果を示す。
既存のGNNの一般化能力は、テストとトレーニンググラフデータの間に分散シフトが存在する場合に低下する。
本稿では,分布外一般化能力を大幅に向上させる非線形グラフデコリレーション法を提案する。
論文 参考訳(メタデータ) (2023-12-19T12:25:10Z) - On Calibration of Modern Quantized Efficient Neural Networks [79.06893963657335]
キャリブレーションの質は、量子化の質を追跡するために観察される。
GhostNet-VGGは、低い精度で全体的なパフォーマンス低下に対して最も堅牢であることが示されている。
論文 参考訳(メタデータ) (2023-09-25T04:30:18Z) - What Makes Graph Neural Networks Miscalibrated? [48.00374886504513]
グラフニューラルネットワーク(GNN)の校正特性に関する系統的研究を行う。
我々は,GNNのキャリブレーションに影響を与える5つの要因を同定する: 一般信頼度傾向, ノード単位の予測分布の多様性, 訓練ノード間距離, 相対信頼度, 近傍類似度。
我々は,グラフニューラルネットワークのキャリブレーションに適した新しいキャリブレーション手法であるグラフアテンション温度スケーリング(GATS)を設計する。
論文 参考訳(メタデータ) (2022-10-12T16:41:42Z) - Sample-dependent Adaptive Temperature Scaling for Improved Calibration [95.7477042886242]
ニューラルネットワークの誤りを補うポストホックアプローチは、温度スケーリングを実行することだ。
入力毎に異なる温度値を予測し、信頼度と精度のミスマッチを調整することを提案する。
CIFAR10/100およびTiny-ImageNetデータセットを用いて,ResNet50およびWideResNet28-10アーキテクチャ上で本手法をテストする。
論文 参考訳(メタデータ) (2022-07-13T14:13:49Z) - On Calibration of Graph Neural Networks for Node Classification [29.738179864433445]
グラフニューラルネットワークは、ノード分類やリンク予測といったタスクのためのエンティティとエッジの埋め込みを学ぶ。
これらのモデルは精度で優れた性能を発揮するが、予測に付随する信頼性スコアは校正されないかもしれない。
本稿では,近隣ノードを考慮に入れたトポロジ対応キャリブレーション手法を提案する。
論文 参考訳(メタデータ) (2022-06-03T13:48:10Z) - Meta-Calibration: Learning of Model Calibration Using Differentiable
Expected Calibration Error [46.12703434199988]
我々は、キャリブレーション品質を直接最適化できる、期待キャリブレーション誤差(DECE)のための新しい微分可能なサロゲートを導入する。
また、DECEを用いて検証セットの校正を最適化するメタラーニングフレームワークを提案する。
論文 参考訳(メタデータ) (2021-06-17T15:47:50Z) - Parameterized Temperature Scaling for Boosting the Expressive Power in
Post-Hoc Uncertainty Calibration [57.568461777747515]
我々は新しいキャリブレーション手法であるパラメタライズド温度スケーリング(PTS)を導入する。
最新のポストホックキャリブレータの精度保持性能は、その本質的な表現力によって制限されることを実証します。
当社の新しい精度保存手法が,多数のモデルアーキテクチャやデータセット,メトリクスにおいて,既存のアルゴリズムを一貫して上回っていることを示す。
論文 参考訳(メタデータ) (2021-02-24T10:18:30Z) - Mix-n-Match: Ensemble and Compositional Methods for Uncertainty
Calibration in Deep Learning [21.08664370117846]
我々は,Mix-n-Matchキャリブレーション戦略が,データ効率と表現力を大幅に向上することを示す。
標準評価プラクティスの潜在的な問題も明らかにします。
我々の手法はキャリブレーションと評価タスクの両方において最先端のソリューションより優れている。
論文 参考訳(メタデータ) (2020-03-16T17:00:35Z) - Calibrating Deep Neural Networks using Focal Loss [77.92765139898906]
ミススキャリブレーション(Miscalibration)は、モデルの信頼性と正しさのミスマッチである。
焦点損失は、既に十分に校正されたモデルを学ぶことができることを示す。
ほぼすべてのケースにおいて精度を損なうことなく,最先端のキャリブレーションを達成できることを示す。
論文 参考訳(メタデータ) (2020-02-21T17:35:50Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。