POPoS: Improving Efficient and Robust Facial Landmark Detection with Parallel Optimal Position Search
- URL: http://arxiv.org/abs/2410.09583v2
- Date: Tue, 15 Oct 2024 15:31:06 GMT
- Title: POPoS: Improving Efficient and Robust Facial Landmark Detection with Parallel Optimal Position Search
- Authors: Chong-Yang Xiang, Jun-Yan He, Zhi-Qi Cheng, Xiao Wu, Xian-Sheng Hua,
- Abstract summary: This paper introduces the Parallel Optimal Position Search (POPoS), a high-precision encoding-decoding framework.
POPoS employs three key innovations: Pseudo-range multilateration is utilized to correct heatmap errors, enhancing the precision of landmark localization.
A single-step parallel algorithm is introduced, significantly enhancing computational efficiency and reducing processing time.
- Score: 34.50794776762681
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Achieving a balance between accuracy and efficiency is a critical challenge in facial landmark detection (FLD). This paper introduces the Parallel Optimal Position Search (POPoS), a high-precision encoding-decoding framework designed to address the fundamental limitations of traditional FLD methods. POPoS employs three key innovations: (1) Pseudo-range multilateration is utilized to correct heatmap errors, enhancing the precision of landmark localization. By integrating multiple anchor points, this approach minimizes the impact of individual heatmap inaccuracies, leading to robust overall positioning. (2) To improve the pseudo-range accuracy of selected anchor points, a new loss function, named multilateration anchor loss, is proposed. This loss function effectively enhances the accuracy of the distance map, mitigates the risk of local optima, and ensures optimal solutions. (3) A single-step parallel computation algorithm is introduced, significantly enhancing computational efficiency and reducing processing time. Comprehensive evaluations across five benchmark datasets demonstrate that POPoS consistently outperforms existing methods, particularly excelling in low-resolution scenarios with minimal computational overhead. These features establish POPoS as a highly efficient and accurate tool for FLD, with broad applicability in real-world scenarios. The code is available at https://github.com/teslatasy/PoPoS
Related papers
- Micro-Structures Graph-Based Point Cloud Registration for Balancing Efficiency and Accuracy [5.70403503863614]
We propose a novel micro-structures graph-based global point cloud registration method.
Our proposed method performs well on the 3DMatch and ETH datasets.
arXiv Detail & Related papers (2024-10-29T08:36:23Z) - SPARE: Symmetrized Point-to-Plane Distance for Robust Non-Rigid Registration [76.40993825836222]
We propose SPARE, a novel formulation that utilizes a symmetrized point-to-plane distance for robust non-rigid registration.
The proposed method greatly improves the accuracy of non-rigid registration problems and maintains relatively high solution efficiency.
arXiv Detail & Related papers (2024-05-30T15:55:04Z) - Efficient LoFTR: Semi-Dense Local Feature Matching with Sparse-Like
Speed [42.861344584752]
Previous detector-free matcher LoFTR has shown remarkable matching capability in handling large-viewpoint change and texture-poor scenarios.
We revisit its design choices and derive multiple improvements for both efficiency and accuracy.
Our method can achieve higher accuracy compared with competitive semi-dense matchers.
arXiv Detail & Related papers (2024-03-07T18:58:40Z) - ICET Online Accuracy Characterization for Geometry-Based Laser Scan
Matching [0.0]
Iterative Closest Ellipsoidal Transform (ICET) is a novel 3D LIDAR scan-matching algorithm.
We show that ICET consistently performs scan matching with sub-centimeter accuracy.
This level of accuracy, combined with the fact that the algorithm is fully interpretable, make it well suited for safety-critical transportation applications.
arXiv Detail & Related papers (2023-06-14T18:21:45Z) - Large-scale Optimization of Partial AUC in a Range of False Positive
Rates [51.12047280149546]
The area under the ROC curve (AUC) is one of the most widely used performance measures for classification models in machine learning.
We develop an efficient approximated gradient descent method based on recent practical envelope smoothing technique.
Our proposed algorithm can also be used to minimize the sum of some ranked range loss, which also lacks efficient solvers.
arXiv Detail & Related papers (2022-03-03T03:46:18Z) - FasterPose: A Faster Simple Baseline for Human Pose Estimation [65.8413964785972]
We propose a design paradigm for cost-effective network with LR representation for efficient pose estimation, named FasterPose.
We study the training behavior of FasterPose, and formulate a novel regressive cross-entropy (RCE) loss function for accelerating the convergence.
Compared with the previously dominant network of pose estimation, our method reduces 58% of the FLOPs and simultaneously gains 1.3% improvement of accuracy.
arXiv Detail & Related papers (2021-07-07T13:39:08Z) - Making Affine Correspondences Work in Camera Geometry Computation [62.7633180470428]
Local features provide region-to-region rather than point-to-point correspondences.
We propose guidelines for effective use of region-to-region matches in the course of a full model estimation pipeline.
Experiments show that affine solvers can achieve accuracy comparable to point-based solvers at faster run-times.
arXiv Detail & Related papers (2020-07-20T12:07:48Z) - Fast and Robust Iterative Closest Point [32.42799285301607]
Iterative Closest Point (ICP) is a fundamental technique for rigid registration between two point sets.
Recent work such as Sparse ICP achieves robustness via sparsity optimization at the cost of computational speed.
We show that the classical point-to-point ICP can be treated as a majorization-minimization (MM) algorithm, and propose an Anderson acceleration approach to speed up its convergence.
arXiv Detail & Related papers (2020-07-15T11:32:53Z) - Pixel-in-Pixel Net: Towards Efficient Facial Landmark Detection in the
Wild [104.61677518999976]
We propose Pixel-in-Pixel Net (PIPNet) for facial landmark detection.
The proposed model is equipped with a novel detection head based on heatmap regression.
To further improve the cross-domain generalization capability of PIPNet, we propose self-training with curriculum.
arXiv Detail & Related papers (2020-03-08T12:23:42Z) - Robust 6D Object Pose Estimation by Learning RGB-D Features [59.580366107770764]
We propose a novel discrete-continuous formulation for rotation regression to resolve this local-optimum problem.
We uniformly sample rotation anchors in SO(3), and predict a constrained deviation from each anchor to the target, as well as uncertainty scores for selecting the best prediction.
Experiments on two benchmarks: LINEMOD and YCB-Video, show that the proposed method outperforms state-of-the-art approaches.
arXiv Detail & Related papers (2020-02-29T06:24:55Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.