Micro-Structures Graph-Based Point Cloud Registration for Balancing Efficiency and Accuracy
- URL: http://arxiv.org/abs/2410.21857v1
- Date: Tue, 29 Oct 2024 08:36:23 GMT
- Title: Micro-Structures Graph-Based Point Cloud Registration for Balancing Efficiency and Accuracy
- Authors: Rongling Zhang, Li Yan, Pengcheng Wei, Hong Xie, Pinzhuo Wang, Binbing Wang,
- Abstract summary: We propose a novel micro-structures graph-based global point cloud registration method.
Our proposed method performs well on the 3DMatch and ETH datasets.
- Score: 5.70403503863614
- License:
- Abstract: Point Cloud Registration (PCR) is a fundamental and significant issue in photogrammetry and remote sensing, aiming to seek the optimal rigid transformation between sets of points. Achieving efficient and precise PCR poses a considerable challenge. We propose a novel micro-structures graph-based global point cloud registration method. The overall method is comprised of two stages. 1) Coarse registration (CR): We develop a graph incorporating micro-structures, employing an efficient graph-based hierarchical strategy to remove outliers for obtaining the maximal consensus set. We propose a robust GNC-Welsch estimator for optimization derived from a robust estimator to the outlier process in the Lie algebra space, achieving fast and robust alignment. 2) Fine registration (FR): To refine local alignment further, we use the octree approach to adaptive search plane features in the micro-structures. By minimizing the distance from the point-to-plane, we can obtain a more precise local alignment, and the process will also be addressed effectively by being treated as a planar adjustment algorithm combined with Anderson accelerated optimization (PA-AA). After extensive experiments on real data, our proposed method performs well on the 3DMatch and ETH datasets compared to the most advanced methods, achieving higher accuracy metrics and reducing the time cost by at least one-third.
Related papers
- POPoS: Improving Efficient and Robust Facial Landmark Detection with Parallel Optimal Position Search [34.50794776762681]
This paper introduces the Parallel Optimal Position Search (POPoS), a high-precision encoding-decoding framework.
POPoS employs three key innovations: Pseudo-range multilateration is utilized to correct heatmap errors, enhancing the precision of landmark localization.
A single-step parallel algorithm is introduced, significantly enhancing computational efficiency and reducing processing time.
arXiv Detail & Related papers (2024-10-12T16:28:40Z) - SPARE: Symmetrized Point-to-Plane Distance for Robust Non-Rigid Registration [76.40993825836222]
We propose SPARE, a novel formulation that utilizes a symmetrized point-to-plane distance for robust non-rigid registration.
The proposed method greatly improves the accuracy of non-rigid registration problems and maintains relatively high solution efficiency.
arXiv Detail & Related papers (2024-05-30T15:55:04Z) - Multiway Point Cloud Mosaicking with Diffusion and Global Optimization [74.3802812773891]
We introduce a novel framework for multiway point cloud mosaicking (named Wednesday)
At the core of our approach is ODIN, a learned pairwise registration algorithm that identifies overlaps and refines attention scores.
Tested on four diverse, large-scale datasets, our method state-of-the-art pairwise and rotation registration results by a large margin on all benchmarks.
arXiv Detail & Related papers (2024-03-30T17:29:13Z) - DIPR: Efficient Point Cloud Registration via Dynamic Iteration [4.491867613612359]
We introduce a novel Efficient Point Cloud Registration via Dynamic It framework, DIPR, that makes the neural network interactively focus on overlapping points based on sparser input points.
Our proposed approach achieves superior registration accuracy while significantly reducing computational time and GPU memory consumption compared to state-of-the-art methods.
arXiv Detail & Related papers (2023-12-05T16:47:46Z) - Vanishing Point Estimation in Uncalibrated Images with Prior Gravity
Direction [82.72686460985297]
We tackle the problem of estimating a Manhattan frame.
We derive two new 2-line solvers, one of which does not suffer from singularities affecting existing solvers.
We also design a new non-minimal method, running on an arbitrary number of lines, to boost the performance in local optimization.
arXiv Detail & Related papers (2023-08-21T13:03:25Z) - GraphReg: Dynamical Point Cloud Registration with Geometry-aware Graph
Signal Processing [0.0]
This study presents a high-accuracy, efficient, and physically induced method for 3D point cloud registration.
We explore geometry aware rigid-body dynamics to regulate the particle (point) motion, which results in more precise and robust registration.
Results demonstrate that our proposed method outperforms state-of-the-art approaches in terms of accuracy and is more suitable for registering large-scale point clouds.
arXiv Detail & Related papers (2023-02-02T14:06:46Z) - Large-scale Optimization of Partial AUC in a Range of False Positive
Rates [51.12047280149546]
The area under the ROC curve (AUC) is one of the most widely used performance measures for classification models in machine learning.
We develop an efficient approximated gradient descent method based on recent practical envelope smoothing technique.
Our proposed algorithm can also be used to minimize the sum of some ranked range loss, which also lacks efficient solvers.
arXiv Detail & Related papers (2022-03-03T03:46:18Z) - Fast and Robust Iterative Closest Point [32.42799285301607]
Iterative Closest Point (ICP) is a fundamental technique for rigid registration between two point sets.
Recent work such as Sparse ICP achieves robustness via sparsity optimization at the cost of computational speed.
We show that the classical point-to-point ICP can be treated as a majorization-minimization (MM) algorithm, and propose an Anderson acceleration approach to speed up its convergence.
arXiv Detail & Related papers (2020-07-15T11:32:53Z) - RPM-Net: Robust Point Matching using Learned Features [79.52112840465558]
RPM-Net is a less sensitive and more robust deep learning-based approach for rigid point cloud registration.
Unlike some existing methods, our RPM-Net handles missing correspondences and point clouds with partial visibility.
arXiv Detail & Related papers (2020-03-30T13:45:27Z) - Learning to Optimize Non-Rigid Tracking [54.94145312763044]
We employ learnable optimizations to improve robustness and speed up solver convergence.
First, we upgrade the tracking objective by integrating an alignment data term on deep features which are learned end-to-end through CNN.
Second, we bridge the gap between the preconditioning technique and learning method by introducing a ConditionNet which is trained to generate a preconditioner.
arXiv Detail & Related papers (2020-03-27T04:40:57Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.