The Fragility of Fairness: Causal Sensitivity Analysis for Fair Machine Learning
- URL: http://arxiv.org/abs/2410.09600v2
- Date: Tue, 15 Oct 2024 16:26:55 GMT
- Title: The Fragility of Fairness: Causal Sensitivity Analysis for Fair Machine Learning
- Authors: Jake Fawkes, Nic Fishman, Mel Andrews, Zachary C. Lipton,
- Abstract summary: We adapt tools from causal sensitivity analysis to the FairML context.
We analyze the sensitivity of the most common parity metrics under 3 varieties of classifier.
We show that causal sensitivity analysis provides a powerful and necessary toolkit for gauging the informativeness of parity metric evaluations.
- Score: 34.50562695587344
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Fairness metrics are a core tool in the fair machine learning literature (FairML), used to determine that ML models are, in some sense, "fair". Real-world data, however, are typically plagued by various measurement biases and other violated assumptions, which can render fairness assessments meaningless. We adapt tools from causal sensitivity analysis to the FairML context, providing a general framework which (1) accommodates effectively any combination of fairness metric and bias that can be posed in the "oblivious setting"; (2) allows researchers to investigate combinations of biases, resulting in non-linear sensitivity; and (3) enables flexible encoding of domain-specific constraints and assumptions. Employing this framework, we analyze the sensitivity of the most common parity metrics under 3 varieties of classifier across 14 canonical fairness datasets. Our analysis reveals the striking fragility of fairness assessments to even minor dataset biases. We show that causal sensitivity analysis provides a powerful and necessary toolkit for gauging the informativeness of parity metric evaluations. Our repository is available here: https://github.com/Jakefawkes/fragile_fair.
Related papers
- Editable Fairness: Fine-Grained Bias Mitigation in Language Models [52.66450426729818]
We propose a novel debiasing approach, Fairness Stamp (FAST), which enables fine-grained calibration of individual social biases.
FAST surpasses state-of-the-art baselines with superior debiasing performance.
This highlights the potential of fine-grained debiasing strategies to achieve fairness in large language models.
arXiv Detail & Related papers (2024-08-07T17:14:58Z) - Lazy Data Practices Harm Fairness Research [49.02318458244464]
We present a comprehensive analysis of fair ML datasets, demonstrating how unreflective practices hinder the reach and reliability of algorithmic fairness findings.
Our analyses identify three main areas of concern: (1) a textbflack of representation for certain protected attributes in both data and evaluations; (2) the widespread textbf of minorities during data preprocessing; and (3) textbfopaque data processing threatening the generalization of fairness research.
This study underscores the need for a critical reevaluation of data practices in fair ML and offers directions to improve both the sourcing and usage of datasets.
arXiv Detail & Related papers (2024-04-26T09:51:24Z) - Balancing Fairness and Accuracy in Data-Restricted Binary Classification [14.439413517433891]
This paper proposes a framework that models the trade-off between accuracy and fairness under four practical scenarios.
Experiments on three datasets demonstrate the utility of the proposed framework as a tool for quantifying the trade-offs.
arXiv Detail & Related papers (2024-03-12T15:01:27Z) - Fairness-enhancing mixed effects deep learning improves fairness on in- and out-of-distribution clustered (non-iid) data [6.596656267996196]
We introduce the Fair Mixed Effects Deep Learning (Fair MEDL) framework.
Fair MEDL quantifies cluster-invariant fixed effects (FE) and cluster-specific random effects (RE)
We incorporate adversarial debiasing to promote fairness across three key metrics: Equalized Odds, Demographic Parity, and Counterfactual Fairness.
arXiv Detail & Related papers (2023-10-04T20:18:45Z) - Learning Fair Classifiers via Min-Max F-divergence Regularization [13.81078324883519]
We introduce a novel min-max F-divergence regularization framework for learning fair classification models.
We show that F-divergence measures possess convexity and differentiability properties.
We show that the proposed framework achieves state-of-the-art performance with respect to the trade-off between accuracy and fairness.
arXiv Detail & Related papers (2023-06-28T20:42:04Z) - Practical Approaches for Fair Learning with Multitype and Multivariate
Sensitive Attributes [70.6326967720747]
It is important to guarantee that machine learning algorithms deployed in the real world do not result in unfairness or unintended social consequences.
We introduce FairCOCCO, a fairness measure built on cross-covariance operators on reproducing kernel Hilbert Spaces.
We empirically demonstrate consistent improvements against state-of-the-art techniques in balancing predictive power and fairness on real-world datasets.
arXiv Detail & Related papers (2022-11-11T11:28:46Z) - Measuring Fairness of Text Classifiers via Prediction Sensitivity [63.56554964580627]
ACCUMULATED PREDICTION SENSITIVITY measures fairness in machine learning models based on the model's prediction sensitivity to perturbations in input features.
We show that the metric can be theoretically linked with a specific notion of group fairness (statistical parity) and individual fairness.
arXiv Detail & Related papers (2022-03-16T15:00:33Z) - Fair Tree Learning [0.15229257192293202]
Various optimisation criteria combine classification performance with a fairness metric.
Current fair decision tree methods only optimise for a fixed threshold on both the classification task as well as the fairness metric.
We propose a threshold-independent fairness metric termed uniform demographic parity, and a derived splitting criterion entitled SCAFF -- Splitting Criterion AUC for Fairness.
arXiv Detail & Related papers (2021-10-18T13:40:25Z) - MultiFair: Multi-Group Fairness in Machine Learning [52.24956510371455]
We study multi-group fairness in machine learning (MultiFair)
We propose a generic end-to-end algorithmic framework to solve it.
Our proposed framework is generalizable to many different settings.
arXiv Detail & Related papers (2021-05-24T02:30:22Z) - Causal Feature Selection for Algorithmic Fairness [61.767399505764736]
We consider fairness in the integration component of data management.
We propose an approach to identify a sub-collection of features that ensure the fairness of the dataset.
arXiv Detail & Related papers (2020-06-10T20:20:10Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.