How Transformers Learn Regular Language Recognition: A Theoretical Study on Training Dynamics and Implicit Bias
- URL: http://arxiv.org/abs/2505.00926v3
- Date: Wed, 28 May 2025 23:17:46 GMT
- Title: How Transformers Learn Regular Language Recognition: A Theoretical Study on Training Dynamics and Implicit Bias
- Authors: Ruiquan Huang, Yingbin Liang, Jing Yang,
- Abstract summary: We focus on two representative tasks in the category of regular language recognition, known as even pairs' and parity check'<n>Our goal is to explore how a one-layer transformer, consisting of an attention layer followed by a linear layer, learns to solve these tasks.
- Score: 48.9399496805422
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Language recognition tasks are fundamental in natural language processing (NLP) and have been widely used to benchmark the performance of large language models (LLMs). These tasks also play a crucial role in explaining the working mechanisms of transformers. In this work, we focus on two representative tasks in the category of regular language recognition, known as `even pairs' and `parity check', the aim of which is to determine whether the occurrences of certain subsequences in a given sequence are even. Our goal is to explore how a one-layer transformer, consisting of an attention layer followed by a linear layer, learns to solve these tasks by theoretically analyzing its training dynamics under gradient descent. While even pairs can be solved directly by a one-layer transformer, parity check need to be solved by integrating Chain-of-Thought (CoT), either into the inference stage of a transformer well-trained for the even pairs task, or into the training of a one-layer transformer. For both problems, our analysis shows that the joint training of attention and linear layers exhibits two distinct phases. In the first phase, the attention layer grows rapidly, mapping data sequences into separable vectors. In the second phase, the attention layer becomes stable, while the linear layer grows logarithmically and approaches in direction to a max-margin hyperplane that correctly separates the attention layer outputs into positive and negative samples, and the loss decreases at a rate of $O(1/t)$. Our experiments validate those theoretical results.
Related papers
- Provable In-Context Learning of Nonlinear Regression with Transformers [58.018629320233174]
In-context learning (ICL) is the ability to perform unseen tasks using task-specific prompts without updating parameters.<n>Recent research has actively explored the training dynamics behind ICL.<n>This paper investigates more complex nonlinear regression tasks, aiming to uncover how transformers acquire in-context learning capabilities.
arXiv Detail & Related papers (2025-07-28T00:09:28Z) - Interpreting Affine Recurrence Learning in GPT-style Transformers [54.01174470722201]
In-context learning allows GPT-style transformers to generalize during inference without modifying their weights.
This paper focuses specifically on their ability to learn and predict affine recurrences as an ICL task.
We analyze the model's internal operations using both empirical and theoretical approaches.
arXiv Detail & Related papers (2024-10-22T21:30:01Z) - Training Dynamics of Transformers to Recognize Word Co-occurrence via Gradient Flow Analysis [97.54180451650122]
We study the dynamics of training a shallow transformer on a task of recognizing co-occurrence of two designated words.
We analyze the gradient flow dynamics of simultaneously training three attention matrices and a linear layer.
We prove a novel property of the gradient flow, termed textitautomatic balancing of gradients, which enables the loss values of different samples to decrease almost at the same rate and further facilitates the proof of near minimum training loss.
arXiv Detail & Related papers (2024-10-12T17:50:58Z) - Non-asymptotic Convergence of Training Transformers for Next-token Prediction [48.9399496805422]
Transformers have achieved extraordinary success in modern machine learning due to their excellent ability to handle sequential data.
This paper provides a fine-grained non-asymptotic analysis of the training dynamics of a one-layer transformer.
We show that the trained transformer presents non-token prediction ability with dataset shift.
arXiv Detail & Related papers (2024-09-25T20:22:06Z) - Unveiling Induction Heads: Provable Training Dynamics and Feature Learning in Transformers [54.20763128054692]
We study how a two-attention-layer transformer is trained to perform ICL on $n$-gram Markov chain data.
We prove that the gradient flow with respect to a cross-entropy ICL loss converges to a limiting model.
arXiv Detail & Related papers (2024-09-09T18:10:26Z) - How Transformers Learn Causal Structure with Gradient Descent [44.31729147722701]
Self-attention allows transformers to encode causal structure.
We introduce an in-context learning task that requires learning latent causal structure.
We show that transformers trained on our in-context learning task are able to recover a wide variety of causal structures.
arXiv Detail & Related papers (2024-02-22T17:47:03Z) - In-Context Convergence of Transformers [63.04956160537308]
We study the learning dynamics of a one-layer transformer with softmax attention trained via gradient descent.
For data with imbalanced features, we show that the learning dynamics take a stage-wise convergence process.
arXiv Detail & Related papers (2023-10-08T17:55:33Z) - Trained Transformers Learn Linear Models In-Context [39.56636898650966]
Attention-based neural networks as transformers have demonstrated a remarkable ability to exhibit inattention learning (ICL)
We show that when transformer training over random instances of linear regression problems, these models' predictions mimic nonlinear of ordinary squares.
arXiv Detail & Related papers (2023-06-16T15:50:03Z) - Effects of Parameter Norm Growth During Transformer Training: Inductive
Bias from Gradient Descent [44.44543743806831]
We study the tendency for transformer parameters to grow in magnitude while saturated between these norms during training.
As the parameters grow in magnitude, we prove that the network approximates a discretized network with saturated activation functions.
Our results suggest saturation is a new characterization of an inductive bias implicit in GD of particular interest for NLP.
arXiv Detail & Related papers (2020-10-19T17:40:38Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.