論文の概要: Many-body Expansion Based Machine Learning Models for Octahedral Transition Metal Complexes
- arxiv url: http://arxiv.org/abs/2410.09659v1
- Date: Sat, 12 Oct 2024 21:54:22 GMT
- ステータス: 処理完了
- システム内更新日: 2024-10-30 08:56:21.505664
- Title: Many-body Expansion Based Machine Learning Models for Octahedral Transition Metal Complexes
- Title(参考訳): オクタヘドラル遷移金属錯体の多体展開に基づく機械学習モデル
- Authors: Ralf Meyer, Daniel Benjamin Kasman Chu, Heather J. Kulik,
- Abstract要約: 我々はオクタ遷移金属錯体(TMCs)のスピン状態依存性特性の機械学習における自己相関の修正を提案する。
新しい戦略は多体展開(MBE)に基づいており、MBEの切り離し順序を変化させることで、捕捉された立体異性体情報を調整することができる。
この新しいアプローチには電子構造理論からの洞察が組み込まれているため、これらのモデルは同素体から異性体への体系的な一般化を示す。
- 参考スコア(独自算出の注目度): 0.0
- License: http://creativecommons.org/licenses/by-nc-sa/4.0/
- Abstract: Graph-based machine learning models for materials properties show great potential to accelerate virtual high-throughput screening of large chemical spaces. However, in their simplest forms, graph-based models do not include any 3D information and are unable to distinguish stereoisomers such as those arising from different orderings of ligands around a metal center in coordination complexes. In this work we present a modification to revised autocorrelation descriptors, our molecular graph featurization method for machine learning various spin state dependent properties of octahedral transition metal complexes (TMCs). Inspired by analytical semi-empirical models for TMCs, the new modeling strategy is based on the many-body expansion (MBE) and allows one to tune the captured stereoisomer information by changing the truncation order of the MBE. We present the necessary modifications to include this approach in two commonly used machine learning methods, kernel ridge regression and feed-forward neural networks. On a test set composed of all possible isomers of binary transition metal complexes, the best MBE models achieve mean absolute errors of 2.75 kcal/mol on spin-splitting energies and 0.26 eV on frontier orbital energy gaps, a 30-40% reduction in error compared to models based on our previous approach. We also observe improved generalization to previously unseen ligands where the best-performing models exhibit mean absolute errors of 4.00 kcal/mol (i.e., a 0.73 kcal/mol reduction) on the spin-splitting energies and 0.53 eV (i.e., a 0.10 eV reduction) on the frontier orbital energy gaps. Because the new approach incorporates insights from electronic structure theory, such as ligand additivity relationships, these models exhibit systematic generalization from homoleptic to heteroleptic complexes, allowing for efficient screening of TMC search spaces.
- Abstract(参考訳): 物質特性のグラフベース機械学習モデルは、大きな化学空間の仮想的高スループットスクリーニングを加速する大きな可能性を示している。
しかしながら、最も単純な形式では、グラフベースのモデルには3D情報が含まれておらず、配位錯体において金属中心の周囲の異なる配位子から生じるような立体異性体を区別することはできない。
本研究では, 八面体遷移金属錯体 (TMCs) のスピン状態依存特性を学習するための分子グラフデクリプタ, 分子グラフデクリプタの改良について述べる。
TMCの解析的半経験モデルにインスパイアされた新しいモデリング戦略は、多体展開(MBE)に基づいて、MBEの切り離し順序を変化させることで、捕捉された立体異性体情報を調整することができる。
本稿では、カーネルリッジ回帰とフィードフォワードニューラルネットワークという2つの一般的な機械学習手法にこのアプローチを組み込むために必要な修正を提案する。
二元遷移金属錯体の可能な全ての異性体からなる試験セットにおいて、最良のMBEモデルは、スピンスプリッティングエネルギーで2.75 kcal/mol、フロンティア軌道エネルギーギャップで0.26 eVの平均絶対誤差を達成する。
また、スピンスプリッティングエネルギーにおける平均絶対誤差が4.00 kcal/mol(すなわち0.73 kcal/mol還元)、フロンティア軌道エネルギーギャップにおける0.53 eV(すなわち0.10 eV還元)であるような未確認リガンドへの一般化も観察した。
この新しいアプローチは、配位子付加性関係のような電子構造理論からの洞察を取り入れているため、これらのモデルは、ホモレプシーゼからヘテロレプシーゼコンプレックスへの体系的な一般化を示し、TMC探索空間の効率的なスクリーニングを可能にしている。
関連論文リスト
- Atomic and Subgraph-aware Bilateral Aggregation for Molecular
Representation Learning [57.670845619155195]
我々は、原子とサブグラフを意識したバイラテラルアグリゲーション(ASBA)と呼ばれる分子表現学習の新しいモデルを導入する。
ASBAは、両方の種類の情報を統合することで、以前の原子単位とサブグラフ単位のモデルの限界に対処する。
本手法は,分子特性予測のための表現をより包括的に学習する方法を提供する。
論文 参考訳(メタデータ) (2023-05-22T00:56:00Z) - Molecular Geometry-aware Transformer for accurate 3D Atomic System
modeling [51.83761266429285]
本稿では,ノード(原子)とエッジ(結合と非結合の原子対)を入力とし,それらの相互作用をモデル化するトランスフォーマーアーキテクチャを提案する。
MoleformerはOC20の緩和エネルギー予測の初期状態の最先端を実現し、QM9では量子化学特性の予測に非常に競争力がある。
論文 参考訳(メタデータ) (2023-02-02T03:49:57Z) - Heterogeneous reconstruction of deformable atomic models in Cryo-EM [30.864688165021054]
変形を少数の集団運動に還元した原子論的な表現に基づく異種再構成法について述べる。
各分布について、我々の手法が原子レベルの精度で中間原子モデルを再カプセル化可能であることを示す。
論文 参考訳(メタデータ) (2022-09-29T22:35:35Z) - GeoDiff: a Geometric Diffusion Model for Molecular Conformation
Generation [102.85440102147267]
分子配座予測のための新しい生成モデルGeoDiffを提案する。
GeoDiffは、既存の最先端のアプローチよりも優れているか、あるいは同等であることを示す。
論文 参考訳(メタデータ) (2022-03-06T09:47:01Z) - Toward Development of Machine Learned Techniques for Production of
Compact Kinetic Models [0.0]
化学動力学モデルは燃焼装置の開発と最適化に欠かせない要素である。
本稿では、過度に再現され、最適化された化学動力学モデルを生成するための、新しい自動計算強化手法を提案する。
論文 参考訳(メタデータ) (2022-02-16T12:31:24Z) - Learning 3D Representations of Molecular Chirality with Invariance to
Bond Rotations [2.17167311150369]
3次元分子コンバータのねじれ角を処理するSE(3)不変モデルを設計する。
本研究では, 学習空間における異なる立体異性体のコンホメータを識別するコントラスト学習, キラル中心をR/Sに分類する学習, エンテロマーが円偏光でどのように回転するかの予測, タンパクポケット内のドッキングスコアによるエナンチオマーのランキングの4つのベンチマークを用いて実験を行った。
論文 参考訳(メタデータ) (2021-10-08T21:25:47Z) - Deciphering Cryptic Behavior in Bimetallic Transition Metal Complexes
with Machine Learning [0.856335408411906]
我々は, 金属-金属結合の程度を予測するために, 330個の構造的特徴を持つヘテロビメタルのサブセット上で回帰モデルを訓練した。
我々の研究は、有理二金属設計の指針を提供し、形式比を含む特性は、ある期間から別の期間に転移可能であることを示唆している。
論文 参考訳(メタデータ) (2021-07-29T19:01:56Z) - GeoMol: Torsional Geometric Generation of Molecular 3D Conformer
Ensembles [60.12186997181117]
分子グラフからの分子の3Dコンホメーラーアンサンブルの予測は、化学情報学と薬物発見の領域において重要な役割を担っている。
既存の生成モデルは、重要な分子幾何学的要素のモデリングの欠如を含むいくつかの欠点がある。
エンド・ツー・エンド、非自己回帰、SE(3)不変の機械学習手法であるGeoMolを提案し、3Dコンバータを生成する。
論文 参考訳(メタデータ) (2021-06-08T14:17:59Z) - BIGDML: Towards Exact Machine Learning Force Fields for Materials [55.944221055171276]
機械学習力場(MLFF)は正確で、計算的で、データ効率が良く、分子、材料、およびそれらのインターフェースに適用できなければならない。
ここでは、Bravais-Inspired Gradient-Domain Machine Learningアプローチを導入し、わずか10-200原子のトレーニングセットを用いて、信頼性の高い力場を構築する能力を実証する。
論文 参考訳(メタデータ) (2021-06-08T10:14:57Z) - Learning Neural Generative Dynamics for Molecular Conformation
Generation [89.03173504444415]
分子グラフから分子コンフォメーション(つまり3d構造)を生成する方法を検討した。
分子グラフから有効かつ多様なコンフォーメーションを生成する新しい確率論的枠組みを提案する。
論文 参考訳(メタデータ) (2021-02-20T03:17:58Z) - Predicting molecular dipole moments by combining atomic partial charges
and atomic dipoles [3.0980025155565376]
高レベル結合クラスター理論を用いて計算した分子$boldsymbolmu$を再現するために、「MuML」モデルが組み合わされた。
校正委員会モデルを用いて予測の不確かさを確実に推定できることを実証する。
論文 参考訳(メタデータ) (2020-03-27T14:35:37Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。