論文の概要: Flying Quadrotors in Tight Formations using Learning-based Model Predictive Control
- arxiv url: http://arxiv.org/abs/2410.09727v1
- Date: Sun, 13 Oct 2024 05:03:16 GMT
- ステータス: 処理完了
- システム内更新日: 2024-10-30 05:12:47.748816
- Title: Flying Quadrotors in Tight Formations using Learning-based Model Predictive Control
- Title(参考訳): 学習型モデル予測制御を用いた太さ形成におけるフライング・クアドロレータ
- Authors: Kong Yao Chee, Pei-An Hsieh, George J. Pappas, M. Ani Hsieh,
- Abstract要約: 本研究では、第一原理モデリングとデータ駆動アプローチの利点を組み合わせたフレームワークを提案する。
このモデルを新しい学習ベースの予測モデル制御フレームワークに組み込むことで、性能が大幅に向上することを示す。
また,本フレームワークは,46秒の飛行データのみを用いて,例外的なサンプル効率を実現している。
- 参考スコア(独自算出の注目度): 30.715469693232492
- License: http://creativecommons.org/licenses/by-nc-nd/4.0/
- Abstract: Flying quadrotors in tight formations is a challenging problem. It is known that in the near-field airflow of a quadrotor, the aerodynamic effects induced by the propellers are complex and difficult to characterize. Although machine learning tools can potentially be used to derive models that capture these effects, these data-driven approaches can be sample inefficient and the resulting models often do not generalize as well as their first-principles counterparts. In this work, we propose a framework that combines the benefits of first-principles modeling and data-driven approaches to construct an accurate and sample efficient representation of the complex aerodynamic effects resulting from quadrotors flying in formation. The data-driven component within our model is lightweight, making it amenable for optimization-based control design. Through simulations and physical experiments, we show that incorporating the model into a novel learning-based nonlinear model predictive control (MPC) framework results in substantial performance improvements in terms of trajectory tracking and disturbance rejection. In particular, our framework significantly outperforms nominal MPC in physical experiments, achieving a 40.1% improvement in the average trajectory tracking errors and a 57.5% reduction in the maximum vertical separation errors. Our framework also achieves exceptional sample efficiency, using only a total of 46 seconds of flight data for training across both simulations and physical experiments. Furthermore, with our proposed framework, the quadrotors achieve an exceptionally tight formation, flying with an average separation of less than 1.5 body lengths throughout the flight. A video illustrating our framework and physical experiments is given here: https://youtu.be/Hv-0JiVoJGo
- Abstract(参考訳): タイトなフォーメーションで飛ぶクアローターは難しい問題です。
四極子近傍の気流では、プロペラによって誘導される空気力学的効果は複雑であり、特徴付けが難しいことが知られている。
機械学習ツールは、これらの効果をキャプチャするモデルを導出するために使用することができるが、これらのデータ駆動型アプローチは、非効率なサンプリングが可能であり、結果として得られるモデルは、第一原理と同様に一般化されないことが多い。
本研究では,第1原理モデリングとデータ駆動手法の利点を組み合わせて,成型時に飛来する四角形による複雑な空力効果の高精度かつ効率的な表現を構築する枠組みを提案する。
モデル内のデータ駆動コンポーネントは軽量で、最適化ベースの制御設計に適しています。
シミュレーションと物理実験により,新しい学習ベース非線形モデル予測制御(MPC)フレームワークにモデルを組み込むことで,軌道追従や外乱の拒絶といった性能が大幅に向上することを示した。
特に,本フレームワークは物理実験において名目MPCよりも優れ,平均軌道追跡誤差が40.1%向上し,垂直分離誤差が57.5%低減した。
また,シミュレーションと物理実験の双方で,46秒の飛行データのみを用いて,例外的なサンプル効率を実現している。
さらに, 提案手法により, 飛行中平均1.5体長の分離を伴い, 極めて厳密な成型を実現した。
私たちのフレームワークと物理実験を解説したビデオがこちらで公開されている。
関連論文リスト
- Rapid aerodynamic prediction of swept wings via physics-embedded transfer learning [10.191783697332227]
機械学習モデルは、超音速旋回翼流場を迅速に取得する有望な方法を提供する。
モデルを効率的に学習するための物理組込み移動学習フレームワークを提案する。
データセットのサイズを減らすには、ウィングトレーニングサンプルの半分未満は、非トランスファーフレームワークと同じエラーレベルに達する必要がある。
論文 参考訳(メタデータ) (2024-09-19T12:35:59Z) - An Experimental Study on Exploring Strong Lightweight Vision Transformers via Masked Image Modeling Pre-Training [51.622652121580394]
Masked Image Modeling (MIM) Pre-training for Large-scale Vision Transformer (ViTs) は、学習した自己教師型ViT機能に加えて、下流での有望なパフォーマンスを実現する。
本稿では,テキストテキストレメリーで軽量なViTの微調整性能が,この事前学習パラダイムの恩恵を受けるかどうかを問う。
バニラ/階層設計(5.7M$/6.5M$)による純軽量ViTの蒸留による事前トレーニングは、ImageNet-1で79.4%$/78.9%の精度で達成できる。
論文 参考訳(メタデータ) (2024-04-18T14:14:44Z) - Foundation Models for Generalist Geospatial Artificial Intelligence [3.7002058945990415]
本稿では,大規模データに基づく基礎モデルの事前学習と微調整を効果的に行うための第1種フレームワークを提案する。
我々はこの枠組みを利用して、マルチスペクトル衛星画像の1TB以上を事前トレーニングしたトランスフォーマーベースの基礎モデルであるPrithviを開発した。
論文 参考訳(メタデータ) (2023-10-28T10:19:55Z) - Leveraging the Power of Data Augmentation for Transformer-based Tracking [64.46371987827312]
トラッキング用にカスタマイズされた2つのデータ拡張手法を提案する。
まず、動的探索半径機構と境界サンプルのシミュレーションにより、既存のランダムトリミングを最適化する。
第2に,背景干渉などの問題に対するモデルを可能にする,トークンレベルの機能混在強化戦略を提案する。
論文 参考訳(メタデータ) (2023-09-15T09:18:54Z) - Supervised Machine Learning for Effective Missile Launch Based on Beyond
Visual Range Air Combat Simulations [0.19573380763700707]
我々は、リサンプリング技術を用いて予測モデルを改善し、精度、精度、リコール、f1スコアを解析する。
最高のf1スコアを持つモデルはそれぞれ0.379と0.465の値を持ち、再サンプリング技術は22.69%増加した。
機械学習モデルに基づく意思決定支援ツールの開発が可能であり,BVR空戦における飛行品質の向上が期待できる。
論文 参考訳(メタデータ) (2022-07-09T04:06:00Z) - Physics-Inspired Temporal Learning of Quadrotor Dynamics for Accurate
Model Predictive Trajectory Tracking [76.27433308688592]
クオーロタのシステムダイナミクスを正確にモデル化することは、アジャイル、安全、安定したナビゲーションを保証する上で非常に重要です。
本稿では,ロボットの経験から,四重項系の力学を純粋に学習するための新しい物理インスパイアされた時間畳み込みネットワーク(PI-TCN)を提案する。
提案手法は,スパース時間的畳み込みと高密度フィードフォワード接続の表現力を組み合わせて,正確なシステム予測を行う。
論文 参考訳(メタデータ) (2022-06-07T13:51:35Z) - Transfer learning driven design optimization for inertial confinement
fusion [0.0]
伝達学習は、シミュレーションと実験データを共通のフレームワークに組み込む予測モデルを作成するための有望なアプローチである。
従来のモデルキャリブレーション手法よりも設計を最適化する方が効率的であることを示す。
論文 参考訳(メタデータ) (2022-05-26T17:38:57Z) - FairIF: Boosting Fairness in Deep Learning via Influence Functions with
Validation Set Sensitive Attributes [51.02407217197623]
本稿では,FAIRIFという2段階の学習アルゴリズムを提案する。
サンプル重みが計算される再重み付きデータセットの損失を最小限に抑える。
FAIRIFは、様々な種類のバイアスに対して、フェアネスとユーティリティのトレードオフを良くしたモデルが得られることを示す。
論文 参考訳(メタデータ) (2022-01-15T05:14:48Z) - Physics-informed linear regression is a competitive approach compared to
Machine Learning methods in building MPC [0.8135412538980287]
総じて, ビルのベースラインコントローラと比較して, 暖房・冷却エネルギーの低減効果が良好であることが示唆された。
また, 物理インフォームドARMAXモデルは, 計算負担が低く, 機械学習モデルと比較して, サンプル効率が優れていることも確認した。
論文 参考訳(メタデータ) (2021-10-29T16:56:05Z) - STAR: Sparse Transformer-based Action Recognition [61.490243467748314]
本研究は,空間的次元と時間的次元に細かな注意を払っている新しいスケルトンに基づく人間行動認識モデルを提案する。
実験により、トレーニング可能なパラメータをはるかに少なくし、トレーニングや推論の高速化を図りながら、モデルが同等のパフォーマンスを達成できることが示されている。
論文 参考訳(メタデータ) (2021-07-15T02:53:11Z) - Churn Reduction via Distillation [54.5952282395487]
本研究は, 基礎モデルを教師として用いた蒸留によるトレーニングと, 予測的チャーンに対する明示的な制約によるトレーニングとの等価性を示す。
次に, 蒸留が近年の多くのベースラインに対する低チャーン訓練に有効であることを示す。
論文 参考訳(メタデータ) (2021-06-04T18:03:31Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。