t-READi: Transformer-Powered Robust and Efficient Multimodal Inference for Autonomous Driving
- URL: http://arxiv.org/abs/2410.09747v3
- Date: Thu, 21 Nov 2024 06:46:57 GMT
- Title: t-READi: Transformer-Powered Robust and Efficient Multimodal Inference for Autonomous Driving
- Authors: Pengfei Hu, Yuhang Qian, Tianyue Zheng, Ang Li, Zhe Chen, Yue Gao, Xiuzhen Cheng, Jun Luo,
- Abstract summary: t-READi is an adaptive inference system that accommodates the variability of multimodal sensory data.
It improves the average inference accuracy by more than 6% and reduces the inference latency by almost 15x.
- Score: 34.4792159427294
- License:
- Abstract: Given the wide adoption of multimodal sensors (e.g., camera, lidar, radar) by autonomous vehicles (AVs), deep analytics to fuse their outputs for a robust perception become imperative. However, existing fusion methods often make two assumptions rarely holding in practice: i) similar data distributions for all inputs and ii) constant availability for all sensors. Because, for example, lidars have various resolutions and failures of radars may occur, such variability often results in significant performance degradation in fusion. To this end, we present tREADi, an adaptive inference system that accommodates the variability of multimodal sensory data and thus enables robust and efficient perception. t-READi identifies variation-sensitive yet structure-specific model parameters; it then adapts only these parameters while keeping the rest intact. t-READi also leverages a cross-modality contrastive learning method to compensate for the loss from missing modalities. Both functions are implemented to maintain compatibility with existing multimodal deep fusion methods. The extensive experiments evidently demonstrate that compared with the status quo approaches, t-READi not only improves the average inference accuracy by more than 6% but also reduces the inference latency by almost 15x with the cost of only 5% extra memory overhead in the worst case under realistic data and modal variations.
Related papers
- Condition-Aware Multimodal Fusion for Robust Semantic Perception of Driving Scenes [56.52618054240197]
We propose a novel, condition-aware multimodal fusion approach for robust semantic perception of driving scenes.
Our method, CAFuser, uses an RGB camera input to classify environmental conditions and generate a Condition Token that guides the fusion of multiple sensor modalities.
We set the new state of the art with CAFuser on the MUSES dataset with 59.7 PQ for multimodal panoptic segmentation and 78.2 mIoU for semantic segmentation, ranking first on the public benchmarks.
arXiv Detail & Related papers (2024-10-14T17:56:20Z) - RADAR: Robust Two-stage Modality-incomplete Industrial Anomaly Detection [61.71770293720491]
We propose a novel two-stage Robust modAlity-imcomplete fusing and Detecting frAmewoRk, abbreviated as RADAR.
Our bootstrapping philosophy is to enhance two stages in MIIAD, improving the robustness of the Multimodal Transformer.
Our experimental results demonstrate that the proposed RADAR significantly surpasses conventional MIAD methods in terms of effectiveness and robustness.
arXiv Detail & Related papers (2024-10-02T16:47:55Z) - Robust Multimodal 3D Object Detection via Modality-Agnostic Decoding and Proximity-based Modality Ensemble [15.173314907900842]
Existing 3D object detection methods rely heavily on the LiDAR sensor.
We propose MEFormer to address the LiDAR over-reliance problem.
Our MEFormer achieves state-of-the-art performance of 73.9% NDS and 71.5% mAP in the nuScenes validation set.
arXiv Detail & Related papers (2024-07-27T03:21:44Z) - AMFD: Distillation via Adaptive Multimodal Fusion for Multispectral Pedestrian Detection [23.91870504363899]
Double-stream networks in multispectral detection employ two separate feature extraction branches for multi-modal data.
This has hindered the widespread employment of multispectral pedestrian detection in embedded devices for autonomous systems.
We introduce the Adaptive Modal Fusion Distillation (AMFD) framework, which can fully utilize the original modal features of the teacher network.
arXiv Detail & Related papers (2024-05-21T17:17:17Z) - Uncertainty-Encoded Multi-Modal Fusion for Robust Object Detection in
Autonomous Driving [8.991012799672713]
This paper proposes Uncertainty-Encoded Mixture-of-Experts (UMoE) that explicitly incorporates single-modal uncertainties into LiDAR-camera fusion.
UMoE achieves a maximum of 10.67%, 3.17%, and 5.40% performance gain compared with the state-of-the-art proposal-level multi-modal object detectors.
arXiv Detail & Related papers (2023-07-30T04:00:41Z) - Cross-Attention is Not Enough: Incongruity-Aware Dynamic Hierarchical
Fusion for Multimodal Affect Recognition [69.32305810128994]
Incongruity between modalities poses a challenge for multimodal fusion, especially in affect recognition.
We propose the Hierarchical Crossmodal Transformer with Dynamic Modality Gating (HCT-DMG), a lightweight incongruity-aware model.
HCT-DMG: 1) outperforms previous multimodal models with a reduced size of approximately 0.8M parameters; 2) recognizes hard samples where incongruity makes affect recognition difficult; 3) mitigates the incongruity at the latent level in crossmodal attention.
arXiv Detail & Related papers (2023-05-23T01:24:15Z) - AutoFed: Heterogeneity-Aware Federated Multimodal Learning for Robust
Autonomous Driving [15.486799633600423]
AutoFed is a framework to fully exploit multimodal sensory data on autonomous vehicles.
We propose a novel model leveraging pseudo-labeling to avoid mistakenly treating unlabeled objects as the background.
We also propose an autoencoder-based data imputation method to fill missing data modality.
arXiv Detail & Related papers (2023-02-17T01:31:53Z) - Detecting Concept Drift in the Presence of Sparsity -- A Case Study of
Automated Change Risk Assessment System [0.8021979227281782]
Missing values, widely called as textitsparsity in literature, is a common characteristic of many real-world datasets.
We study different patterns of missing values, various statistical and ML based data imputation methods for different kinds of sparsity.
We then select the best concept drift detector given a dataset with missing values based on the different metrics.
arXiv Detail & Related papers (2022-07-27T04:27:49Z) - Inertial Hallucinations -- When Wearable Inertial Devices Start Seeing
Things [82.15959827765325]
We propose a novel approach to multimodal sensor fusion for Ambient Assisted Living (AAL)
We address two major shortcomings of standard multimodal approaches, limited area coverage and reduced reliability.
Our new framework fuses the concept of modality hallucination with triplet learning to train a model with different modalities to handle missing sensors at inference time.
arXiv Detail & Related papers (2022-07-14T10:04:18Z) - Trustworthy Multimodal Regression with Mixture of Normal-inverse Gamma
Distributions [91.63716984911278]
We introduce a novel Mixture of Normal-Inverse Gamma distributions (MoNIG) algorithm, which efficiently estimates uncertainty in principle for adaptive integration of different modalities and produces a trustworthy regression result.
Experimental results on both synthetic and different real-world data demonstrate the effectiveness and trustworthiness of our method on various multimodal regression tasks.
arXiv Detail & Related papers (2021-11-11T14:28:12Z) - Multimodal Object Detection via Bayesian Fusion [59.31437166291557]
We study multimodal object detection with RGB and thermal cameras, since the latter can provide much stronger object signatures under poor illumination.
Our key contribution is a non-learned late-fusion method that fuses together bounding box detections from different modalities.
We apply our approach to benchmarks containing both aligned (KAIST) and unaligned (FLIR) multimodal sensor data.
arXiv Detail & Related papers (2021-04-07T04:03:20Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.