論文の概要: Comparison of Machine Learning Approaches for Classifying Spinodal Events
- arxiv url: http://arxiv.org/abs/2410.09756v1
- Date: Sun, 13 Oct 2024 07:27:00 GMT
- ステータス: 処理完了
- システム内更新日: 2024-10-30 05:02:48.439854
- Title: Comparison of Machine Learning Approaches for Classifying Spinodal Events
- Title(参考訳): スピノダル事象の分類における機械学習手法の比較
- Authors: Ashwini Malviya, Sparsh Mittal,
- Abstract要約: 我々は、いくつかのアンサンブルモデル(大投票、AdaBoost)とともに、最先端モデル(MobileViT、NAT、EfficientNet、CNN)を評価する。
以上の結果から,NATとMobileViTは他のモデルよりも優れており,トレーニングデータとテストデータの両方において,最高の測定精度,AUC,F1スコアを達成できた。
- 参考スコア(独自算出の注目度): 3.030969076856776
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: In this work, we compare the performance of deep learning models for classifying the spinodal dataset. We evaluate state-of-the-art models (MobileViT, NAT, EfficientNet, CNN), alongside several ensemble models (majority voting, AdaBoost). Additionally, we explore the dataset in a transformed color space. Our findings show that NAT and MobileViT outperform other models, achieving the highest metrics-accuracy, AUC, and F1 score on both training and testing data (NAT: 94.65, 0.98, 0.94; MobileViT: 94.20, 0.98, 0.94), surpassing the earlier CNN model (88.44, 0.95, 0.88). We also discuss failure cases for the top performing models.
- Abstract(参考訳): 本研究では,スピノダールデータセットの分類のためのディープラーニングモデルの性能を比較した。
我々は,モバイルViT,NAT,EfficientNet,CNNといった最先端モデルと,複数のアンサンブルモデル(マイジョリティ投票,AdaBoost)を評価した。
さらに、変換された色空間でデータセットを探索する。
以上の結果から,NATとMobileViTは,トレーニングおよびテストデータ(NAT:94.65,0.98,0.94; MobileViT:94.20,0.98,0.94;)の指標精度,AUC,F1スコアを達成し,従来のCNNモデル(88.44,0.95,0.88)を上回った。
また、トップパフォーマンスモデルの失敗事例についても論じる。
関連論文リスト
- A Comparative Study of Hybrid Models in Health Misinformation Text Classification [0.43695508295565777]
本研究では、オンラインソーシャルネットワーク(OSN)上での新型コロナウイルス関連誤情報検出における機械学習(ML)モデルとディープラーニング(DL)モデルの有効性を評価する。
本研究は, 従来のMLアルゴリズムよりも, DLおよびハイブリッドDLモデルの方が, OSN上の新型コロナウイルスの誤情報を検出するのに有効であることが示唆された。
論文 参考訳(メタデータ) (2024-10-08T19:43:37Z) - A Comparative Analysis of CNN-based Deep Learning Models for Landslide Detection [0.0]
インド北部とネパールの地すべりは大きな破壊をもたらし、インフラを損傷し、地域社会に脅威を与えている。
近年のインド北部とネパールの地すべりは、大きな破壊を招き、インフラを損傷し、地域社会に脅威を与えている。
ディープラーニング技術の一種であるCNNは、画像処理において顕著な成功を収めている。
論文 参考訳(メタデータ) (2024-08-03T07:20:10Z) - Transfer Learning with Point Transformers [3.678615604632945]
Point Transformerは、Point Cloudデータの分類、セグメンテーション、検出のための最先端モデルである。
モデルNet10データセットに基づくこれらの注目ネットワークの分類性能について検討し、3次元MNISTデータセットを微調整後に分類するためにトレーニングされたモデルを用いた。
論文 参考訳(メタデータ) (2024-04-01T01:23:58Z) - Robust Learning with Progressive Data Expansion Against Spurious
Correlation [65.83104529677234]
本研究では,2層非線形畳み込みニューラルネットワークの学習過程について検討した。
分析の結果,不均衡なデータ群と学習容易なスプリアス特徴が学習過程におけるスプリアス特徴の優位性に繋がる可能性が示唆された。
本稿では,PDEと呼ばれる新たなトレーニングアルゴリズムを提案する。
論文 参考訳(メタデータ) (2023-06-08T05:44:06Z) - TRAK: Attributing Model Behavior at Scale [79.56020040993947]
本稿では,大規模な微分モデルに対して有効かつ計算的に抽出可能なデータ属性法であるTRAK(Tracing with Randomly-trained After Kernel)を提案する。
論文 参考訳(メタデータ) (2023-03-24T17:56:22Z) - Large-scale Robustness Analysis of Video Action Recognition Models [10.017292176162302]
我々は6つの最先端動作認識モデルの90種類の摂動に対する堅牢性について検討した。
1) トランスフォーマーベースモデルはCNNベースモデルと比較して一貫して堅牢であり、2) 事前トレーニングはCNNベースモデルよりもトランスフォーマーベースモデルのロバスト性を改善し、3) 研究されたモデルはすべて、SSv2以外のすべてのデータセットに対して時間的摂動に対して堅牢である。
論文 参考訳(メタデータ) (2022-07-04T13:29:34Z) - Comparing Test Sets with Item Response Theory [53.755064720563]
我々は,18の事前学習トランスフォーマーモデルから予測した29のデータセットを個別のテスト例で評価した。
Quoref、HellaSwag、MC-TACOは最先端のモデルを区別するのに最適である。
また、QAMRやSQuAD2.0のようなQAデータセットに使用されるスパン選択タスク形式は、強いモデルと弱いモデルとの差別化に有効である。
論文 参考訳(メタデータ) (2021-06-01T22:33:53Z) - FastIF: Scalable Influence Functions for Efficient Model Interpretation
and Debugging [112.19994766375231]
影響関数は、テスト予測のためのトレーニングデータポイントの「影響」を近似する。
fastifは、実行時間を大幅に改善する関数に影響を与えるための、単純な修正セットです。
本実験はモデル解釈とモデル誤差の修正における影響関数の可能性を示す。
論文 参考訳(メタデータ) (2020-12-31T18:02:34Z) - Do Adversarially Robust ImageNet Models Transfer Better? [102.09335596483695]
逆向きに堅牢なモデルは、トランスファーラーニングに使用する場合、標準訓練されたモデルよりもよく機能する。
私たちの結果は、ロバストさが機能表現の改善につながるという最近の仮説と一致しています。
論文 参考訳(メタデータ) (2020-07-16T17:42:40Z) - Data from Model: Extracting Data from Non-robust and Robust Models [83.60161052867534]
この研究は、データとモデルの関係を明らかにするために、モデルからデータを生成する逆プロセスについて検討する。
本稿では,データ・トゥ・モデル(DtM)とデータ・トゥ・モデル(DfM)を連続的に処理し,特徴マッピング情報の喪失について検討する。
以上の結果から,DtMとDfMの複数シーケンスの後にも,特にロバストモデルにおいて精度低下が制限されることが示唆された。
論文 参考訳(メタデータ) (2020-07-13T05:27:48Z) - Gestalt: a Stacking Ensemble for SQuAD2.0 [0.0]
本稿では,文脈文中の質問に対する正しい回答を見つけ出し,提示する深層学習システムを提案する。
我々のゴールは、各アンサンブルで最高のモデルを上回る異種SQuAD2.0モデルのアンサンブルを学習することである。
論文 参考訳(メタデータ) (2020-04-02T08:09:22Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。