論文の概要: BlackDAN: A Black-Box Multi-Objective Approach for Effective and Contextual Jailbreaking of Large Language Models
- arxiv url: http://arxiv.org/abs/2410.09804v3
- Date: Wed, 27 Nov 2024 02:41:48 GMT
- ステータス: 翻訳完了
- システム内更新日: 2024-11-28 15:24:51.592572
- Title: BlackDAN: A Black-Box Multi-Objective Approach for Effective and Contextual Jailbreaking of Large Language Models
- Title(参考訳): BlackDAN: 大規模言語モデルの効果的かつ文脈的ジェイルブレイクのためのブラックボックス多目的アプローチ
- Authors: Xinyuan Wang, Victor Shea-Jay Huang, Renmiao Chen, Hao Wang, Chengwei Pan, Lei Sha, Minlie Huang,
- Abstract要約: BlackDANは、多目的最適化を備えた革新的なブラックボックス攻撃フレームワークである。
ジェイルブレイクを効果的に促進する高品質なプロンプトを生成する。
コンテキスト関連性を維持し、検出可能性を最小限にする。
- 参考スコア(独自算出の注目度): 47.576957746503666
- License:
- Abstract: While large language models (LLMs) exhibit remarkable capabilities across various tasks, they encounter potential security risks such as jailbreak attacks, which exploit vulnerabilities to bypass security measures and generate harmful outputs. Existing jailbreak strategies mainly focus on maximizing attack success rate (ASR), frequently neglecting other critical factors, including the relevance of the jailbreak response to the query and the level of stealthiness. This narrow focus on single objectives can result in ineffective attacks that either lack contextual relevance or are easily recognizable. In this work, we introduce BlackDAN, an innovative black-box attack framework with multi-objective optimization, aiming to generate high-quality prompts that effectively facilitate jailbreaking while maintaining contextual relevance and minimizing detectability. BlackDAN leverages Multiobjective Evolutionary Algorithms (MOEAs), specifically the NSGA-II algorithm, to optimize jailbreaks across multiple objectives including ASR, stealthiness, and semantic relevance. By integrating mechanisms like mutation, crossover, and Pareto-dominance, BlackDAN provides a transparent and interpretable process for generating jailbreaks. Furthermore, the framework allows customization based on user preferences, enabling the selection of prompts that balance harmfulness, relevance, and other factors. Experimental results demonstrate that BlackDAN outperforms traditional single-objective methods, yielding higher success rates and improved robustness across various LLMs and multimodal LLMs, while ensuring jailbreak responses are both relevant and less detectable.
- Abstract(参考訳): 大きな言語モデル(LLM)は様々なタスクにまたがる優れた機能を示すが、セキュリティ対策をバイパスし有害な出力を生成するために脆弱性を利用するジェイルブレイク攻撃のような潜在的なセキュリティリスクに遭遇する。
既存のジェイルブレイク戦略は主に攻撃成功率(ASR)の最大化に重点を置いており、クエリに対するジェイルブレイク応答の関連性やステルスネスのレベルなど、他の重要な要素を頻繁に無視している。
この単一目的への焦点の狭さは、文脈的関連性を欠いたり、容易に認識できるような非効果的な攻撃をもたらす可能性がある。
本研究では,多目的最適化を備えた革新的なブラックボックスアタックフレームワークであるBlackDANを紹介し,コンテキスト関連性を維持しつつジェイルブレイクを効果的に促進し,検出可能性を最小限に抑えるための高品質なプロンプトを生成することを目的とする。
BlackDANはマルチオブジェクト進化アルゴリズム(MOEA)、特にNSGA-IIアルゴリズムを活用して、ASR、ステルスネス、セマンティック関連性を含む複数の目的にわたるジェイルブレイクを最適化する。
BlackDANは、突然変異、クロスオーバー、パレート・マディナンスなどのメカニズムを統合することで、ジェイルブレイクを生成するための透明で解釈可能なプロセスを提供する。
さらに、このフレームワークは、ユーザの好みに基づいたカスタマイズを可能にし、有害性、関連性、その他の要因のバランスをとるプロンプトの選択を可能にする。
実験の結果、BlackDANは従来の単目的法よりも優れており、高い成功率と様々なLSMおよびマルチモーダルLSM間の堅牢性が向上し、ジェイルブレイク応答が適切かつ検出不能であることが確認された。
関連論文リスト
- Reasoning-Augmented Conversation for Multi-Turn Jailbreak Attacks on Large Language Models [53.580928907886324]
Reasoning-Augmented Conversationは、新しいマルチターンジェイルブレイクフレームワークである。
有害なクエリを良心的な推論タスクに再構成する。
RACEは,複雑な会話シナリオにおいて,最先端攻撃の有効性を実現する。
論文 参考訳(メタデータ) (2025-02-16T09:27:44Z) - xJailbreak: Representation Space Guided Reinforcement Learning for Interpretable LLM Jailbreaking [32.89084809038529]
ブラックボックス・ジェイルブレイク(Black-box jailbreak)は、大規模な言語モデルの安全メカニズムをバイパスする攻撃である。
強化学習(RL)を利用した新しいブラックボックスジェイルブレイク手法を提案する。
我々は,より厳密で総合的なジェイルブレイク成功評価を提供するために,キーワード,意図マッチング,回答バリデーションを取り入れた総合的ジェイルブレイク評価フレームワークを導入する。
論文 参考訳(メタデータ) (2025-01-28T06:07:58Z) - LLM-Virus: Evolutionary Jailbreak Attack on Large Language Models [59.29840790102413]
既存のジェイルブレイク攻撃は主に不透明な最適化手法と勾配探索法に基づいている。
進化的ジェイルブレイクと呼ばれる進化的アルゴリズムに基づくジェイルブレイク攻撃手法であるLSM-Virusを提案する。
この結果から, LLM-Virus は既存の攻撃手法と比較して, 競争力や性能に優れていたことが示唆された。
論文 参考訳(メタデータ) (2024-12-28T07:48:57Z) - IDEATOR: Jailbreaking Large Vision-Language Models Using Themselves [67.30731020715496]
ブラックボックスのジェイルブレイク攻撃に対して,悪意のある画像テキストペアを自動生成する新しいジェイルブレイク手法 IDEATOR を提案する。
IDEATORはVLMを使用して、ターゲットとなるJailbreakテキストを作成し、最先端の拡散モデルによって生成されたJailbreakイメージと組み合わせる。
平均5.34クエリでMiniGPT-4をジェイルブレイクし、LLaVA、InstructBLIP、Meta's Chameleonに転送すると82%、88%、75%という高い成功率を達成した。
論文 参考訳(メタデータ) (2024-10-29T07:15:56Z) - Multi-Turn Context Jailbreak Attack on Large Language Models From First Principles [2.5167155755957316]
コンテキスト・フュージョン・アタック (Context Fusion Attack, CFA) は、コンテキスト・フュージョン・ブラックボックス・ジェイルブレイク・アタックの手法である。
また,他の多ターン攻撃戦略と比較して,CFAの成功率,ばらつき,有害性を示す。
論文 参考訳(メタデータ) (2024-08-08T09:18:47Z) - Cross-modality Information Check for Detecting Jailbreaking in Multimodal Large Language Models [17.663550432103534]
マルチモーダル大言語モデル(MLLM)は、多モーダル情報を包括的に理解するためにLLMの能力を拡張する。
これらのモデルは、悪意のあるユーザーがターゲットモデルの安全アライメントを壊し、誤解を招く、有害な回答を発生させることができるジェイルブレイク攻撃の影響を受けやすい。
本稿では,悪質な摂動画像入力を識別するプラグイン・アンド・プレイのジェイルブレイク検出装置であるCIDERを提案する。
論文 参考訳(メタデータ) (2024-07-31T15:02:46Z) - Virtual Context: Enhancing Jailbreak Attacks with Special Token Injection [54.05862550647966]
本稿では、以前LLMセキュリティで見過ごされていた特別なトークンを活用して、ジェイルブレイク攻撃を改善する仮想コンテキストを提案する。
総合的な評価によると、仮想コンテキストによるジェイルブレイク攻撃は、4つの広く使われているジェイルブレイク手法の成功率を約40%向上させることができる。
論文 参考訳(メタデータ) (2024-06-28T11:35:54Z) - White-box Multimodal Jailbreaks Against Large Vision-Language Models [61.97578116584653]
本稿では,テキストと画像のモダリティを併用して,大規模視覚言語モデルにおけるより広範な脆弱性のスペクトルを利用する,より包括的戦略を提案する。
本手法は,テキスト入力がない場合に,逆画像プレフィックスをランダムノイズから最適化し,有害な応答を多様に生成することから始める。
様々な有害な指示に対する肯定的な反応を誘発する確率を最大化するために、対向テキスト接頭辞を、対向画像接頭辞と統合し、共最適化する。
論文 参考訳(メタデータ) (2024-05-28T07:13:30Z) - Distract Large Language Models for Automatic Jailbreak Attack [8.364590541640482]
大規模言語モデルの自動レッドチーム化のための新しいブラックボックスジェイルブレイクフレームワークを提案する。
我々は、Jailbreak LLMに対する反復最適化アルゴリズムを用いて、悪意のあるコンテンツの隠蔽とメモリリフレーミングを設計した。
論文 参考訳(メタデータ) (2024-03-13T11:16:43Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。