論文の概要: Learning Pattern-Specific Experts for Time Series Forecasting Under Patch-level Distribution Shift
- arxiv url: http://arxiv.org/abs/2410.09836v1
- Date: Sun, 13 Oct 2024 13:35:29 GMT
- ステータス: 処理完了
- システム内更新日: 2024-10-30 04:42:48.995878
- Title: Learning Pattern-Specific Experts for Time Series Forecasting Under Patch-level Distribution Shift
- Title(参考訳): パッチレベルの分布シフト下での時系列予測のためのパターン特化専門家の学習
- Authors: Yanru Sun, Zongxia Xie, Emadeldeen Eldele, Dongyue Chen, Qinghua Hu, Min Wu,
- Abstract要約: 時系列予測は、過去のデータに基づいて将来の価値を予測することを目的としている。
実世界の時間はしばしば、季節、動作条件、意味的な意味など、セグメントごとに異なるパターンを持つ複雑な非一様分布を示す。
本稿では,より正確で適応可能な時系列予測のために,パターン特化の専門家を活用した新しいアーキテクチャbftextSを提案する。
- 参考スコア(独自算出の注目度): 30.581736814767606
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Time series forecasting, which aims to predict future values based on historical data, has garnered significant attention due to its broad range of applications. However, real-world time series often exhibit complex non-uniform distribution with varying patterns across segments, such as season, operating condition, or semantic meaning, making accurate forecasting challenging. Existing approaches, which typically train a single model to capture all these diverse patterns, often struggle with the pattern drifts between patches and may lead to poor generalization. To address these challenges, we propose \textbf{TFPS}, a novel architecture that leverages pattern-specific experts for more accurate and adaptable time series forecasting. TFPS employs a dual-domain encoder to capture both time-domain and frequency-domain features, enabling a more comprehensive understanding of temporal dynamics. It then uses subspace clustering to dynamically identify distinct patterns across data patches. Finally, pattern-specific experts model these unique patterns, delivering tailored predictions for each patch. By explicitly learning and adapting to evolving patterns, TFPS achieves significantly improved forecasting accuracy. Extensive experiments on real-world datasets demonstrate that TFPS outperforms state-of-the-art methods, particularly in long-term forecasting, through its dynamic and pattern-aware learning approach. The data and codes are available: \url{https://github.com/syrGitHub/TFPS}.
- Abstract(参考訳): 時系列予測は、過去のデータに基づいて将来の価値を予測することを目的としており、その広範囲な応用により、大きな注目を集めている。
しかし、実世界の時系列は季節、動作条件、意味的な意味など、様々なパターンを持つ複雑な非一様分布を示すことが多く、正確な予測は困難である。
既存のアプローチでは、これらのさまざまなパターンをキャプチャするために単一のモデルをトレーニングするが、しばしばパッチ間のパターンのドリフトに苦しむため、一般化が不十分になる可能性がある。
これらの課題に対処するために,パターン固有のエキスパートを活用してより正確で適応可能な時系列予測を行う新しいアーキテクチャである「textbf{TFPS}」を提案する。
TFPSは、時間領域と周波数領域の両方の特徴を捉えるためにデュアルドメインエンコーダを使用しており、時間的ダイナミクスをより包括的に理解することができる。
次にサブスペースクラスタリングを使用して、データパッチ間で異なるパターンを動的に識別する。
最後に、パターン固有の専門家は、これらのユニークなパターンをモデル化し、パッチ毎にカスタマイズされた予測を提供する。
進化するパターンを明示的に学習し適応することにより、TFPSは予測精度を大幅に改善する。
実世界のデータセットに対する大規模な実験は、TFPSが動的およびパターン認識学習アプローチを通じて、特に長期予測において最先端の手法よりも優れていることを示した。
データとコードは以下の通りである。
関連論文リスト
- FlexTSF: A Universal Forecasting Model for Time Series with Variable Regularities [17.164913785452367]
我々は,より優れた一般化を持ち,正規時間と不規則時間の両方をサポートする普遍時系列予測モデルFlexTSFを提案する。
12のデータセットの実験では、FlexTSFは、それぞれ通常の時系列と不規則時系列のために設計された最先端の予測モデルより優れていることが示されている。
論文 参考訳(メタデータ) (2024-10-30T16:14:09Z) - Moirai-MoE: Empowering Time Series Foundation Models with Sparse Mixture of Experts [103.725112190618]
本稿では,単一入出力プロジェクション層を用いたMoirai-MoEを紹介するとともに,多種多様な時系列パターンのモデリングを専門家の疎結合に委ねる。
39のデータセットに対する大規模な実験は、既存の基盤モデルよりも、分配シナリオとゼロショットシナリオの両方において、Moirai-MoEの優位性を実証している。
論文 参考訳(メタデータ) (2024-10-14T13:01:11Z) - Timer-XL: Long-Context Transformers for Unified Time Series Forecasting [67.83502953961505]
我々は時系列の統一予測のための生成変換器Timer-XLを提案する。
Timer-XLは、統一されたアプローチにより、挑戦的な予測ベンチマークで最先端のパフォーマンスを達成する。
論文 参考訳(メタデータ) (2024-10-07T07:27:39Z) - DAM: Towards A Foundation Model for Time Series Forecasting [0.8231118867997028]
本稿では,ランダムにサンプリングされた履歴を抽出し,時間連続関数として調整可能な基底組成を出力するニューラルモデルを提案する。
1)長い尾の分布からランダムにサンプリングされたヒストリーを使用する柔軟なアプローチ、(2)これらの活発にサンプリングされたヒストリーに基づいてトレーニングされたトランスフォーマーバックボーンを表現的出力として、(3)時間の連続関数の基底係数を含む。
論文 参考訳(メタデータ) (2024-07-25T08:48:07Z) - Generative Pretrained Hierarchical Transformer for Time Series Forecasting [3.739587363053192]
予測のための新しい生成事前学習型階層型トランスフォーマーアーキテクチャ,textbfGPHTを提案する。
主流の自己教師付き事前学習モデルと教師付きモデルを用いて,8つのデータセット上で十分な実験を行う。
その結果、GPHTは、従来の長期予測タスクにおいて、様々な微調整およびゼロ/フェーショット学習設定のベースラインモデルを上回ることを示した。
論文 参考訳(メタデータ) (2024-02-26T11:54:54Z) - PDETime: Rethinking Long-Term Multivariate Time Series Forecasting from
the perspective of partial differential equations [49.80959046861793]
本稿では,ニューラルPDEソルバの原理に着想を得た新しいLMTFモデルであるPDETimeを提案する。
7つの異なる時間的実世界のLMTFデータセットを用いた実験により、PDETimeがデータ固有の性質に効果的に適応できることが判明した。
論文 参考訳(メタデータ) (2024-02-25T17:39:44Z) - Unified Training of Universal Time Series Forecasting Transformers [104.56318980466742]
マスク型ユニバーサル時系列予測変換器(モイライ)について述べる。
Moiraiは、新たに導入された大規模オープンタイムシリーズアーカイブ(LOTSA)で訓練されており、9つのドメインで27億以上の観測が行われた。
Moiraiは、フルショットモデルと比較してゼロショットの予測器として、競争力や優れたパフォーマンスを達成する。
論文 参考訳(メタデータ) (2024-02-04T20:00:45Z) - Spatiotemporal-Linear: Towards Universal Multivariate Time Series
Forecasting [10.404951989266191]
本稿ではSTL(Spatio-Temporal-Linear)フレームワークを紹介する。
STLは、Linearベースのアーキテクチャを拡張するために、時間組込みと空間インフォームドのバイパスをシームレスに統合する。
実証的な証拠は、さまざまな観測時間と予測期間とデータセットにわたって、LinearとTransformerのベンチマークを上回り、STLの成果を浮き彫りにしている。
論文 参考訳(メタデータ) (2023-12-22T17:46:34Z) - Deep Autoregressive Models with Spectral Attention [74.08846528440024]
本稿では,深部自己回帰モデルとスペクトル注意(SA)モジュールを組み合わせた予測アーキテクチャを提案する。
時系列の埋め込みをランダムなプロセスの発生としてスペクトル領域に特徴付けることにより,グローバルな傾向と季節パターンを同定することができる。
時系列に対するグローバルとローカルの2つのスペクトルアテンションモデルは、この情報を予測の中に統合し、スペクトルフィルタリングを行い、時系列のノイズを除去する。
論文 参考訳(メタデータ) (2021-07-13T11:08:47Z) - Model-Attentive Ensemble Learning for Sequence Modeling [86.4785354333566]
シーケンスモデリング(MAES)のためのモデル・アテンティブ・アンサンブル・ラーニングを提案する。
MAESは、異なるシーケンスダイナミクスの専門家を専門とし、予測を適応的に重み付けるために、注目ベースのゲーティングメカニズムを利用する時系列の専門家の混合物です。
MAESが時系列シフトを受けるデータセットの人気シーケンスモデルを大幅に上回ることを示す。
論文 参考訳(メタデータ) (2021-02-23T05:23:35Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。