Provably Reliable Conformal Prediction Sets in the Presence of Data Poisoning
- URL: http://arxiv.org/abs/2410.09878v1
- Date: Sun, 13 Oct 2024 15:37:11 GMT
- Title: Provably Reliable Conformal Prediction Sets in the Presence of Data Poisoning
- Authors: Yan Scholten, Stephan Günnemann,
- Abstract summary: Conformal prediction provides model-agnostic and distribution-free uncertainty quantification.
Yet, conformal prediction is not reliable under poisoning attacks where adversaries manipulate both training and calibration data.
We propose reliable prediction sets (RPS): the first efficient method for constructing conformal prediction sets with provable reliability guarantees under poisoning.
- Score: 53.42244686183879
- License: http://creativecommons.org/licenses/by-sa/4.0/
- Abstract: Conformal prediction provides model-agnostic and distribution-free uncertainty quantification through prediction sets that are guaranteed to include the ground truth with any user-specified probability. Yet, conformal prediction is not reliable under poisoning attacks where adversaries manipulate both training and calibration data, which can significantly alter prediction sets in practice. As a solution, we propose reliable prediction sets (RPS): the first efficient method for constructing conformal prediction sets with provable reliability guarantees under poisoning. To ensure reliability under training poisoning, we introduce smoothed score functions that reliably aggregate predictions of classifiers trained on distinct partitions of the training data. To ensure reliability under calibration poisoning, we construct multiple prediction sets, each calibrated on distinct subsets of the calibration data. We then aggregate them into a majority prediction set, which includes a class only if it appears in a majority of the individual sets. Both proposed aggregations mitigate the influence of datapoints in the training and calibration data on the final prediction set. We experimentally validate our approach on image classification tasks, achieving strong reliability while maintaining utility and preserving coverage on clean data. Overall, our approach represents an important step towards more trustworthy uncertainty quantification in the presence of data poisoning.
Related papers
- Robust Yet Efficient Conformal Prediction Sets [53.78604391939934]
Conformal prediction (CP) can convert any model's output into prediction sets guaranteed to include the true label.
We derive provably robust sets by bounding the worst-case change in conformity scores.
arXiv Detail & Related papers (2024-07-12T10:59:44Z) - Split Conformal Prediction under Data Contamination [14.23965125128232]
We study the robustness of split conformal prediction in a data contamination setting.
We quantify the impact of corrupted data on the coverage and efficiency of the constructed sets.
We propose an adjustment in the classification setting which we call Contamination Robust Conformal Prediction.
arXiv Detail & Related papers (2024-07-10T14:33:28Z) - Domain-adaptive and Subgroup-specific Cascaded Temperature Regression
for Out-of-distribution Calibration [16.930766717110053]
We propose a novel meta-set-based cascaded temperature regression method for post-hoc calibration.
We partition each meta-set into subgroups based on predicted category and confidence level, capturing diverse uncertainties.
A regression network is then trained to derive category-specific and confidence-level-specific scaling, achieving calibration across meta-sets.
arXiv Detail & Related papers (2024-02-14T14:35:57Z) - Reliability-Aware Prediction via Uncertainty Learning for Person Image
Retrieval [51.83967175585896]
UAL aims at providing reliability-aware predictions by considering data uncertainty and model uncertainty simultaneously.
Data uncertainty captures the noise" inherent in the sample, while model uncertainty depicts the model's confidence in the sample's prediction.
arXiv Detail & Related papers (2022-10-24T17:53:20Z) - Calibrated Selective Classification [34.08454890436067]
We develop a new approach to selective classification in which we propose a method for rejecting examples with "uncertain" uncertainties.
We present a framework for learning selectively calibrated models, where a separate selector network is trained to improve the selective calibration error of a given base model.
We demonstrate the empirical effectiveness of our approach on multiple image classification and lung cancer risk assessment tasks.
arXiv Detail & Related papers (2022-08-25T13:31:09Z) - Robust Flow-based Conformal Inference (FCI) with Statistical Guarantee [4.821312633849745]
We develop a series of conformal inference methods, including building predictive sets and inferring outliers for complex and high-dimensional data.
We evaluate our method, robust flow-based conformal inference, on benchmark datasets.
arXiv Detail & Related papers (2022-05-22T04:17:30Z) - Conformal prediction for the design problem [72.14982816083297]
In many real-world deployments of machine learning, we use a prediction algorithm to choose what data to test next.
In such settings, there is a distinct type of distribution shift between the training and test data.
We introduce a method to quantify predictive uncertainty in such settings.
arXiv Detail & Related papers (2022-02-08T02:59:12Z) - Private Prediction Sets [72.75711776601973]
Machine learning systems need reliable uncertainty quantification and protection of individuals' privacy.
We present a framework that treats these two desiderata jointly.
We evaluate the method on large-scale computer vision datasets.
arXiv Detail & Related papers (2021-02-11T18:59:11Z) - Robust Validation: Confident Predictions Even When Distributions Shift [19.327409270934474]
We describe procedures for robust predictive inference, where a model provides uncertainty estimates on its predictions rather than point predictions.
We present a method that produces prediction sets (almost exactly) giving the right coverage level for any test distribution in an $f$-divergence ball around the training population.
An essential component of our methodology is to estimate the amount of expected future data shift and build robustness to it.
arXiv Detail & Related papers (2020-08-10T17:09:16Z) - Unlabelled Data Improves Bayesian Uncertainty Calibration under
Covariate Shift [100.52588638477862]
We develop an approximate Bayesian inference scheme based on posterior regularisation.
We demonstrate the utility of our method in the context of transferring prognostic models of prostate cancer across globally diverse populations.
arXiv Detail & Related papers (2020-06-26T13:50:19Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.