Robust Flow-based Conformal Inference (FCI) with Statistical Guarantee
- URL: http://arxiv.org/abs/2205.10732v1
- Date: Sun, 22 May 2022 04:17:30 GMT
- Title: Robust Flow-based Conformal Inference (FCI) with Statistical Guarantee
- Authors: Youhui Ye, Meimei Liu, Xin Xing
- Abstract summary: We develop a series of conformal inference methods, including building predictive sets and inferring outliers for complex and high-dimensional data.
We evaluate our method, robust flow-based conformal inference, on benchmark datasets.
- Score: 4.821312633849745
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Conformal prediction aims to determine precise levels of confidence in
predictions for new objects using past experience. However, the commonly used
exchangeable assumptions between the training data and testing data limit its
usage in dealing with contaminated testing sets. In this paper, we develop a
series of conformal inference methods, including building predictive sets and
inferring outliers for complex and high-dimensional data. We leverage ideas
from adversarial flow to transfer the input data to a random vector with known
distributions, which enable us to construct a non-conformity score for
uncertainty quantification. We can further learn the distribution of input data
in each class directly through the learned transformation. Therefore, our
approach is applicable and more robust when the test data is contaminated. We
evaluate our method, robust flow-based conformal inference, on benchmark
datasets. We find that it produces effective prediction sets and accurate
outlier detection and is more powerful relative to competing approaches.
Related papers
- Provably Reliable Conformal Prediction Sets in the Presence of Data Poisoning [53.42244686183879]
Conformal prediction provides model-agnostic and distribution-free uncertainty quantification.
Yet, conformal prediction is not reliable under poisoning attacks where adversaries manipulate both training and calibration data.
We propose reliable prediction sets (RPS): the first efficient method for constructing conformal prediction sets with provable reliability guarantees under poisoning.
arXiv Detail & Related papers (2024-10-13T15:37:11Z) - Split Conformal Prediction under Data Contamination [14.23965125128232]
We study the robustness of split conformal prediction in a data contamination setting.
We quantify the impact of corrupted data on the coverage and efficiency of the constructed sets.
We propose an adjustment in the classification setting which we call Contamination Robust Conformal Prediction.
arXiv Detail & Related papers (2024-07-10T14:33:28Z) - Binary Classification with Confidence Difference [100.08818204756093]
This paper delves into a novel weakly supervised binary classification problem called confidence-difference (ConfDiff) classification.
We propose a risk-consistent approach to tackle this problem and show that the estimation error bound the optimal convergence rate.
We also introduce a risk correction approach to mitigate overfitting problems, whose consistency and convergence rate are also proven.
arXiv Detail & Related papers (2023-10-09T11:44:50Z) - Uncertainty Quantification in Deep Neural Networks through Statistical
Inference on Latent Space [0.0]
We develop an algorithm that exploits the latent-space representation of data points fed into the network to assess the accuracy of their prediction.
We show on a synthetic dataset that commonly used methods are mostly overconfident.
In contrast, our method can detect such out-of-distribution data points as inaccurately predicted, thus aiding in the automatic detection of outliers.
arXiv Detail & Related papers (2023-05-18T09:52:06Z) - Adapting to Continuous Covariate Shift via Online Density Ratio Estimation [64.8027122329609]
Dealing with distribution shifts is one of the central challenges for modern machine learning.
We propose an online method that can appropriately reuse historical information.
Our density ratio estimation method is proven to perform well by enjoying a dynamic regret bound.
arXiv Detail & Related papers (2023-02-06T04:03:33Z) - Conformal prediction for the design problem [72.14982816083297]
In many real-world deployments of machine learning, we use a prediction algorithm to choose what data to test next.
In such settings, there is a distinct type of distribution shift between the training and test data.
We introduce a method to quantify predictive uncertainty in such settings.
arXiv Detail & Related papers (2022-02-08T02:59:12Z) - Leveraging Unlabeled Data to Predict Out-of-Distribution Performance [63.740181251997306]
Real-world machine learning deployments are characterized by mismatches between the source (training) and target (test) distributions.
In this work, we investigate methods for predicting the target domain accuracy using only labeled source data and unlabeled target data.
We propose Average Thresholded Confidence (ATC), a practical method that learns a threshold on the model's confidence, predicting accuracy as the fraction of unlabeled examples.
arXiv Detail & Related papers (2022-01-11T23:01:12Z) - Robust Validation: Confident Predictions Even When Distributions Shift [19.327409270934474]
We describe procedures for robust predictive inference, where a model provides uncertainty estimates on its predictions rather than point predictions.
We present a method that produces prediction sets (almost exactly) giving the right coverage level for any test distribution in an $f$-divergence ball around the training population.
An essential component of our methodology is to estimate the amount of expected future data shift and build robustness to it.
arXiv Detail & Related papers (2020-08-10T17:09:16Z) - Unlabelled Data Improves Bayesian Uncertainty Calibration under
Covariate Shift [100.52588638477862]
We develop an approximate Bayesian inference scheme based on posterior regularisation.
We demonstrate the utility of our method in the context of transferring prognostic models of prostate cancer across globally diverse populations.
arXiv Detail & Related papers (2020-06-26T13:50:19Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.