論文の概要: A Hybrid Sampling and Multi-Objective Optimization Approach for Enhanced Software Defect Prediction
- arxiv url: http://arxiv.org/abs/2410.10046v1
- Date: Sun, 13 Oct 2024 23:39:04 GMT
- ステータス: 処理完了
- システム内更新日: 2024-10-30 03:23:50.320688
- Title: A Hybrid Sampling and Multi-Objective Optimization Approach for Enhanced Software Defect Prediction
- Title(参考訳): ソフトウェア欠陥予測のためのハイブリッドサンプリングと多目的最適化手法
- Authors: Jie Zhang, Dongcheng Li, W. Eric Wong, Shengrong Wang,
- Abstract要約: 本稿では,ハイブリッドサンプリング技術と多目的最適化アルゴリズムを組み合わせた新しいSDPフレームワークを提案する。
提案モデルは,多目的最適化による特徴融合を適用し,一般化能力と予測の安定性を両立させる。
NASAとPROMISEリポジトリのデータセットで実施された実験は、提案されたハイブリッドサンプリングと多目的最適化アプローチがデータのバランスを改善し、冗長な特徴を排除し、予測精度を高めることを示した。
- 参考スコア(独自算出の注目度): 3.407555189785573
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Accurate early prediction of software defects is essential to maintain software quality and reduce maintenance costs. However, the field of software defect prediction (SDP) faces challenges such as class imbalances, high-dimensional feature spaces, and suboptimal prediction accuracy. To mitigate these challenges, this paper introduces a novel SDP framework that integrates hybrid sampling techniques, specifically Borderline SMOTE and Tomek Links, with a suite of multi-objective optimization algorithms, including NSGA-II, MOPSO, and MODE. The proposed model applies feature fusion through multi-objective optimization, enhancing both the generalization capability and stability of the predictions. Furthermore, the integration of parallel processing for these optimization algorithms significantly boosts the computational efficiency of the model. Comprehensive experiments conducted on datasets from NASA and PROMISE repositories demonstrate that the proposed hybrid sampling and multi-objective optimization approach improves data balance, eliminates redundant features, and enhances prediction accuracy. The experimental results also highlight the robustness of the feature fusion approach, confirming its superiority over existing state-of-the-art techniques in terms of predictive performance and applicability across diverse datasets.
- Abstract(参考訳): ソフトウェアの欠陥の正確な早期予測は、ソフトウェア品質の維持とメンテナンスコストの削減に不可欠である。
しかし、ソフトウェア欠陥予測(SDP)の分野は、クラス不均衡、高次元特徴空間、最適下予測精度といった課題に直面している。
本稿では,これらの課題を軽減するために,Borderline SMOTEとTomek Linksというハイブリッドサンプリング技術とNSGA-II,MOPSO,MODEを含む多目的最適化アルゴリズムを統合する新しいSDPフレームワークを提案する。
提案モデルは,多目的最適化による特徴融合を適用し,一般化能力と予測の安定性を両立させる。
さらに、これらの最適化アルゴリズムに対する並列処理の統合により、モデルの計算効率が大幅に向上する。
NASAとPROMISEレポジトリのデータセットで実施された包括的な実験は、提案されたハイブリッドサンプリングと多目的最適化アプローチがデータのバランスを改善し、冗長な特徴を排除し、予測精度を高めることを実証している。
実験結果はまた、機能融合アプローチの堅牢性を強調し、様々なデータセットにわたる予測性能と適用性の観点から、既存の最先端技術よりも優れていることを確認した。
関連論文リスト
- Beyond Single-Model Views for Deep Learning: Optimization versus
Generalizability of Stochastic Optimization Algorithms [13.134564730161983]
本稿では、勾配降下(SGD)とその変種に着目し、ディープラーニングの最適化に新しいアプローチを採用する。
我々はSGDとその変種がSAMのような平らなミニマと同等の性能を示すことを示した。
本研究は、トレーニング損失とホールドアウト精度の関係、およびSGDとノイズ対応変種の性能について、いくつかの重要な知見を明らかにした。
論文 参考訳(メタデータ) (2024-03-01T14:55:22Z) - End-to-End Learning for Fair Multiobjective Optimization Under
Uncertainty [55.04219793298687]
機械学習における予測-Then-Forecast(PtO)パラダイムは、下流の意思決定品質を最大化することを目的としている。
本稿では,PtO法を拡張して,OWA(Nondifferentiable Ordered Weighted Averaging)の目的を最適化する。
この結果から,不確実性の下でのOWA関数の最適化とパラメトリック予測を効果的に統合できることが示唆された。
論文 参考訳(メタデータ) (2024-02-12T16:33:35Z) - Federated Conditional Stochastic Optimization [110.513884892319]
条件付き最適化は、不変学習タスク、AUPRC、AMLなど、幅広い機械学習タスクで見られる。
本稿では,分散フェデレーション学習のためのアルゴリズムを提案する。
論文 参考訳(メタデータ) (2023-10-04T01:47:37Z) - Comparative Evaluation of Metaheuristic Algorithms for Hyperparameter
Selection in Short-Term Weather Forecasting [0.0]
本稿では,遺伝的アルゴリズム (GA), 微分進化 (DE), 粒子群最適化 (PSO) のメタヒューリスティックアルゴリズムの適用について検討する。
平均二乗誤差(MSE)や平均絶対パーセンテージ誤差(MAPE)といった指標に基づいて天気予報の性能を評価する。
論文 参考訳(メタデータ) (2023-09-05T22:13:35Z) - Multi-objective hyperparameter optimization with performance uncertainty [62.997667081978825]
本稿では,機械学習アルゴリズムの評価における不確実性を考慮した多目的ハイパーパラメータ最適化の結果について述べる。
木構造型Parzen Estimator(TPE)のサンプリング戦略と、ガウス過程回帰(GPR)と異種雑音の訓練後に得られたメタモデルを組み合わせる。
3つの解析的テスト関数と3つのML問題の実験結果は、多目的TPEとGPRよりも改善したことを示している。
論文 参考訳(メタデータ) (2022-09-09T14:58:43Z) - Careful! Training Relevance is Real [0.7742297876120561]
我々は、トレーニングの妥当性を強制するために設計された制約を提案する。
提案した制約を加えることで,ソリューションの品質が大幅に向上することを示す。
論文 参考訳(メタデータ) (2022-01-12T11:54:31Z) - Modeling the Second Player in Distributionally Robust Optimization [90.25995710696425]
我々は、最悪のケース分布を特徴付けるために神経生成モデルを使うことを議論する。
このアプローチは多くの実装と最適化の課題をもたらします。
提案されたアプローチは、同等のベースラインよりも堅牢なモデルを生み出す。
論文 参考訳(メタデータ) (2021-03-18T14:26:26Z) - Automatically Learning Compact Quality-aware Surrogates for Optimization
Problems [55.94450542785096]
未知パラメータで最適化問題を解くには、未知パラメータの値を予測し、これらの値を用いて問題を解くための予測モデルを学ぶ必要がある。
最近の研究によると、複雑なトレーニングモデルパイプラインのレイヤーとして最適化の問題を含めると、観測されていない意思決定の繰り返しを予測することになる。
我々は,大規模最適化問題の低次元サロゲートモデルを学習することにより,解の質を向上させることができることを示す。
論文 参考訳(メタデータ) (2020-06-18T19:11:54Z) - Bilevel Optimization for Differentially Private Optimization in Energy
Systems [53.806512366696275]
本稿では,入力に敏感な制約付き最適化問題に対して,差分プライバシーを適用する方法について検討する。
本稿は, 自然仮定の下では, 大規模非線形最適化問題に対して, 双レベルモデルを効率的に解けることを示す。
論文 参考訳(メタデータ) (2020-01-26T20:15:28Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。