論文の概要: Beyond-RAG: Question Identification and Answer Generation in Real-Time Conversations
- arxiv url: http://arxiv.org/abs/2410.10136v1
- Date: Mon, 14 Oct 2024 04:06:22 GMT
- ステータス: 処理完了
- システム内更新日: 2024-10-30 02:54:14.429341
- Title: Beyond-RAG: Question Identification and Answer Generation in Real-Time Conversations
- Title(参考訳): Beyond-RAG:リアルタイム会話における質問識別と回答生成
- Authors: Garima Agrawal, Sashank Gummuluri, Cosimo Spera,
- Abstract要約: カスタマーコンタクトセンターでは、人間エージェントは長い平均処理時間(AHT)に苦しむことが多い。
本稿では,顧客質問をリアルタイムに識別し,RAGを超越した意思決定を支援するシステムを提案する。
クエリがFAQと一致した場合、システムはFAQデータベースから直接回答を検索する。
- 参考スコア(独自算出の注目度): 0.0
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: In customer contact centers, human agents often struggle with long average handling times (AHT) due to the need to manually interpret queries and retrieve relevant knowledge base (KB) articles. While retrieval augmented generation (RAG) systems using large language models (LLMs) have been widely adopted in industry to assist with such tasks, RAG faces challenges in real-time conversations, such as inaccurate query formulation and redundant retrieval of frequently asked questions (FAQs). To address these limitations, we propose a decision support system that can look beyond RAG by first identifying customer questions in real time. If the query matches an FAQ, the system retrieves the answer directly from the FAQ database; otherwise, it generates answers via RAG. Our approach reduces reliance on manual queries, providing responses to agents within 2 seconds. Deployed in AI-powered human-agent assist solution at Minerva CQ, this system improves efficiency, reduces AHT, and lowers operational costs. We also introduce an automated LLM-agentic workflow to identify FAQs from historical transcripts when no predefined FAQs exist.
- Abstract(参考訳): カスタマーコンタクトセンターでは、質問を手動で解釈し、関連する知識ベース(KB)記事を取得する必要があるため、人間エージェントは長い平均処理時間(AHT)に苦しむことが多い。
大規模言語モデル(LLM)を用いた検索強化システム(RAG)は,そのようなタスクを支援するために業界で広く採用されているが,RAGは不正確なクエリの定式化や頻繁な質問(FAQ)の冗長な検索など,リアルタイム会話における課題に直面している。
これらの制約に対処するため,顧客質問をリアルタイムに識別し,RAGを超越した意思決定支援システムを提案する。
クエリがFAQと一致した場合、システムはFAQデータベースから直接回答を検索する。
このアプローチでは,手動クエリへの依存を低減し,エージェントへの応答を2秒以内で提供する。
Minerva CQでAIを活用したヒューマンエージェントアシストソリューションとしてデプロイされたこのシステムは、効率を改善し、AHTを低減し、運用コストを低減します。
また,既定のFAQが存在しない場合に,過去の文書からFAQを識別するためのLLM-agenticワークフローも導入する。
関連論文リスト
- Benchmarking Multimodal Retrieval Augmented Generation with Dynamic VQA Dataset and Self-adaptive Planning Agent [102.31558123570437]
マルチモーダル大規模言語モデル(MLLM)に固有の「ハロシン化」問題を緩和する上で,mRAG(Multimodal Retrieval Augmented Generation)が重要な役割を果たしている。
マルチモーダル検索のための自己適応型計画エージェントOmniSearchを提案する。
論文 参考訳(メタデータ) (2024-11-05T09:27:21Z) - AGENT-CQ: Automatic Generation and Evaluation of Clarifying Questions for Conversational Search with LLMs [53.6200736559742]
エージェント-CQは、世代ステージと評価ステージの2つのステージから構成される。
CrowdLLMは、人間のクラウドソーシング判断をシミュレートして、生成された質問や回答を評価する。
ClariQデータセットの実験では、質問と回答の品質を評価するCrowdLLMの有効性が示されている。
論文 参考訳(メタデータ) (2024-10-25T17:06:27Z) - RAG-ConfusionQA: A Benchmark for Evaluating LLMs on Confusing Questions [52.33835101586687]
会話AIエージェントはRetrieval Augmented Generation(RAG)を使用して、ユーザからの問い合わせに対して検証可能なドキュメント地上応答を提供する。
本稿では,与えられた文書コーパスから,文脈に乱れた多様な質問を効率的に生成する,新しい合成データ生成手法を提案する。
論文 参考訳(メタデータ) (2024-10-18T16:11:29Z) - Enhancing Retrieval in QA Systems with Derived Feature Association [0.0]
Retrieval augmented generation (RAG) は、長い文脈質問応答(QA)システムにおいて標準となっている。
我々は、AI派生文書(RAIDD)からレトリーバル(Retrieval)と呼ばれるRAGシステムへの新たな拡張を提案する。
論文 参考訳(メタデータ) (2024-10-02T05:24:49Z) - RAG based Question-Answering for Contextual Response Prediction System [0.4660328753262075]
大規模言語モデル(LLM)は、様々な自然言語処理(NLP)タスクにおいて汎用性を示している。
Retrieval Augmented Generation (RAG)は、この課題に対処するための有望な技術として登場した。
本稿では,産業用ユースケースにRAG機能を備えたLCMを用いたエンドツーエンドフレームワークを提案する。
論文 参考訳(メタデータ) (2024-09-05T17:14:23Z) - CLARINET: Augmenting Language Models to Ask Clarification Questions for Retrieval [52.134133938779776]
CLARINETは,回答が正しい候補の確実性を最大化する質問を選択することで,情報的明確化を問うシステムである。
提案手法は,大規模言語モデル(LLM)を検索分布の条件付きで拡張し,各ターンで真の候補のランクを最大化する問題を生成する。
論文 参考訳(メタデータ) (2024-04-28T18:21:31Z) - MFBE: Leveraging Multi-Field Information of FAQs for Efficient Dense
Retrieval [1.7403133838762446]
本稿では,複数組み合わせのFAQフィールドを利用するバイエンコーダベースのクエリ-FAQマッチングモデルを提案する。
本モデルでは,内部およびオープンデータセットにおけるFAQ検索タスクにおいて,約27%,20%の精度でトップ1の精度を実現している。
論文 参考訳(メタデータ) (2023-02-23T12:02:49Z) - Multi-Tenant Optimization For Few-Shot Task-Oriented FAQ Retrieval [0.0]
タスク指向ダイアログシステムにおけるビジネス固有の頻繁な質問(FAQ)検索は、ユニークな課題を提起する。
クエリクエスト(q-Q)類似度と少数ショットインテント検出技術を用いて,このようなビジネスFAQの性能を評価する。
文中の最後の層を対照的に微調整することで,マルチテナントFAQアプリケーションを現実のコンテキストでスケールする手法を提案する。
論文 参考訳(メタデータ) (2023-01-25T10:55:45Z) - Medical Question Understanding and Answering with Knowledge Grounding
and Semantic Self-Supervision [53.692793122749414]
本稿では,知識基盤とセマンティック・セルフスーパービジョンを備えた医療質問理解・回答システムについて紹介する。
我々のシステムは、まず、教師付き要約損失を用いて、長い医学的、ユーザによる質問を要約するパイプラインである。
システムはまず、信頼された医療知識ベースから要約されたユーザ質問とFAQとをマッチングし、対応する回答文書から一定の数の関連文を検索する。
論文 参考訳(メタデータ) (2022-09-30T08:20:32Z) - NoiseQA: Challenge Set Evaluation for User-Centric Question Answering [68.67783808426292]
応答エンジンに先立つパイプライン内のコンポーネントが,多種多様なエラーの原因を発生させることができることを示す。
我々は、QAシステムが効果的にデプロイされる前に、進歩の余地がかなりあると結論付けている。
論文 参考訳(メタデータ) (2021-02-16T18:35:29Z) - Towards Automatic Generation of Questions from Long Answers [11.198653485869935]
本稿では,従来のAQGシステムの性能評価のための新しい評価ベンチマークを提案する。
既存のAQG法の性能は,回答の長さが大きくなるにつれて著しく低下することを示した。
トランスフォーマーに基づく手法は, 従来のAQG法よりも, 自己評価や人的評価の点で優れていた。
論文 参考訳(メタデータ) (2020-04-10T16:45:08Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。