The Importance of Justified Patient Trust in unlocking AI's potential in mental healthcare
- URL: http://arxiv.org/abs/2410.10233v1
- Date: Mon, 14 Oct 2024 07:50:10 GMT
- Title: The Importance of Justified Patient Trust in unlocking AI's potential in mental healthcare
- Authors: Tita Alissa Bach, Niko Mannikko,
- Abstract summary: Without trust, patients may hesitate to engage with AI systems.
This paper focuses on the trust that mental health patients, as direct users, must have in AI systems.
- Score: 0.0
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Without trust, patients may hesitate to engage with AI systems, significantly limiting the technology's potential in mental healthcare. This paper focuses specifically on the trust that mental health patients, as direct users, must have in AI systems, highlighting the most sensitive and direct relationship between AI systems and those whose mental healthcare is impacted by them. We explore the concept of justified trust, why it is important for patient positive care outcomes, and the strategies needed to foster and maintain this trust. By examining these aspects, we highlight how cultivating justified trust is key to unlocking AI's potential impact in mental healthcare.
Related papers
- Limits of trust in medical AI [1.6317061277457001]
AI systems can be relied upon, and are capable of reliability, but cannot be trusted, and are not capable of trustworthiness.
Insofar as patients are required to rely upon AI systems for their medical decision-making, there is potential for this to produce a deficit of trust in relationships in clinical practice.
arXiv Detail & Related papers (2025-03-20T20:22:38Z) - Towards Privacy-aware Mental Health AI Models: Advances, Challenges, and Opportunities [61.633126163190724]
Mental illness is a widespread and debilitating condition with substantial societal and personal costs.
Recent advances in Artificial Intelligence (AI) hold great potential for recognizing and addressing conditions such as depression, anxiety disorder, bipolar disorder, schizophrenia, and post-traumatic stress disorder.
Privacy concerns, including the risk of sensitive data leakage from datasets and trained models, remain a critical barrier to deploying these AI systems in real-world clinical settings.
arXiv Detail & Related papers (2025-02-01T15:10:02Z) - Ethical Challenges and Evolving Strategies in the Integration of Artificial Intelligence into Clinical Practice [1.0301404234578682]
We focus on five critical ethical concerns: justice and fairness, transparency, patient consent and confidentiality, accountability, and patient-centered and equitable care.
The paper explores how bias, lack of transparency, and challenges in maintaining patient trust can undermine the effectiveness and fairness of AI applications in healthcare.
arXiv Detail & Related papers (2024-11-18T00:52:22Z) - Imagining and building wise machines: The centrality of AI metacognition [78.76893632793497]
We argue that shortcomings stem from one overarching failure: AI systems lack wisdom.
While AI research has focused on task-level strategies, metacognition is underdeveloped in AI systems.
We propose that integrating metacognitive capabilities into AI systems is crucial for enhancing their robustness, explainability, cooperation, and safety.
arXiv Detail & Related papers (2024-11-04T18:10:10Z) - Enhancing Mental Health Support through Human-AI Collaboration: Toward Secure and Empathetic AI-enabled chatbots [0.0]
This paper explores the potential of AI-enabled chatbots as a scalable solution.
We assess their ability to deliver empathetic, meaningful responses in mental health contexts.
We propose a federated learning framework that ensures data privacy, reduces bias, and integrates continuous validation from clinicians to enhance response quality.
arXiv Detail & Related papers (2024-09-17T20:49:13Z) - A Diachronic Perspective on User Trust in AI under Uncertainty [52.44939679369428]
Modern NLP systems are often uncalibrated, resulting in confidently incorrect predictions that undermine user trust.
We study the evolution of user trust in response to trust-eroding events using a betting game.
arXiv Detail & Related papers (2023-10-20T14:41:46Z) - Who to Trust, How and Why: Untangling AI Ethics Principles,
Trustworthiness and Trust [0.0]
We argue for the need to distinguish these concepts more clearly.
We discuss that trust in AI involves not only reliance on the system itself, but also trust in the developers of the AI system.
arXiv Detail & Related papers (2023-09-19T05:00:34Z) - Designing for Responsible Trust in AI Systems: A Communication
Perspective [56.80107647520364]
We draw from communication theories and literature on trust in technologies to develop a conceptual model called MATCH.
We highlight transparency and interaction as AI systems' affordances that present a wide range of trustworthiness cues to users.
We propose a checklist of requirements to help technology creators identify appropriate cues to use.
arXiv Detail & Related papers (2022-04-29T00:14:33Z) - Cybertrust: From Explainable to Actionable and Interpretable AI (AI2) [58.981120701284816]
Actionable and Interpretable AI (AI2) will incorporate explicit quantifications and visualizations of user confidence in AI recommendations.
It will allow examining and testing of AI system predictions to establish a basis for trust in the systems' decision making.
arXiv Detail & Related papers (2022-01-26T18:53:09Z) - Trustworthy AI: A Computational Perspective [54.80482955088197]
We focus on six of the most crucial dimensions in achieving trustworthy AI: (i) Safety & Robustness, (ii) Non-discrimination & Fairness, (iii) Explainability, (iv) Privacy, (v) Accountability & Auditability, and (vi) Environmental Well-Being.
For each dimension, we review the recent related technologies according to a taxonomy and summarize their applications in real-world systems.
arXiv Detail & Related papers (2021-07-12T14:21:46Z) - Know Your Model (KYM): Increasing Trust in AI and Machine Learning [4.93786553432578]
We analyze each element of trustworthiness and provide a set of 20 guidelines that can be leveraged to ensure optimal AI functionality.
The guidelines help ensure that trustworthiness is provable and can be demonstrated, they are implementation agnostic, and they can be applied to any AI system in any sector.
arXiv Detail & Related papers (2021-05-31T14:08:22Z) - Formalizing Trust in Artificial Intelligence: Prerequisites, Causes and
Goals of Human Trust in AI [55.4046755826066]
We discuss a model of trust inspired by, but not identical to, sociology's interpersonal trust (i.e., trust between people)
We incorporate a formalization of 'contractual trust', such that trust between a user and an AI is trust that some implicit or explicit contract will hold.
We discuss how to design trustworthy AI, how to evaluate whether trust has manifested, and whether it is warranted.
arXiv Detail & Related papers (2020-10-15T03:07:23Z) - Trust and Medical AI: The challenges we face and the expertise needed to
overcome them [15.07989177980542]
Failures of medical AI could have serious consequences for clinical outcomes and the patient experience.
This article describes the major conceptual, technical, and humanistic challenges in medical AI.
It proposes a solution that hinges on the education and accreditation of new expert groups who specialize in the development, verification, and operation of medical AI technologies.
arXiv Detail & Related papers (2020-08-18T04:17:58Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.