LOBG:Less Overfitting for Better Generalization in Vision-Language Model
- URL: http://arxiv.org/abs/2410.10247v2
- Date: Sun, 27 Oct 2024 10:40:39 GMT
- Title: LOBG:Less Overfitting for Better Generalization in Vision-Language Model
- Authors: Chenhao Ding, Xinyuan Gao, Songlin Dong, Yuhang He, Qiang Wang, Alex Kot, Yihong Gong,
- Abstract summary: We propose a framework named LOBG for vision-language models.
We use CLIP to filter out fine-grained foreground information that might cause overfitting, thereby guiding prompts with basic visual concepts.
Our method significantly improves generalization capability and alleviates overfitting compared to state-of-the-art approaches.
- Score: 19.890629892640206
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Existing prompt learning methods in Vision-Language Models (VLM) have effectively enhanced the transfer capability of VLM to downstream tasks, but they suffer from a significant decline in generalization due to severe overfitting. To address this issue, we propose a framework named LOBG for vision-language models. Specifically, we use CLIP to filter out fine-grained foreground information that might cause overfitting, thereby guiding prompts with basic visual concepts. To further mitigate overfitting, we devel oped a structural topology preservation (STP) loss at the feature level, which endows the feature space with overall plasticity, allowing effective reshaping of the feature space during optimization. Additionally, we employed hierarchical logit distilation (HLD) at the output level to constrain outputs, complementing STP at the output end. Extensive experimental results demonstrate that our method significantly improves generalization capability and alleviates overfitting compared to state-of-the-art approaches.
Related papers
- Content-decoupled Contrastive Learning-based Implicit Degradation Modeling for Blind Image Super-Resolution [33.16889233975723]
Implicit degradation modeling-based blind super-resolution (SR) has attracted more increasing attention in the community.
We propose a new Content-decoupled Contrastive Learning-based blind image super-resolution (CdCL) framework.
arXiv Detail & Related papers (2024-08-10T04:51:43Z) - Enhancing Robustness of Vision-Language Models through Orthogonality Learning and Self-Regularization [77.62516752323207]
We introduce an orthogonal fine-tuning method for efficiently fine-tuning pretrained weights and enabling enhanced robustness and generalization.
A self-regularization strategy is further exploited to maintain the stability in terms of zero-shot generalization of VLMs, dubbed OrthSR.
For the first time, we revisit the CLIP and CoOp with our method to effectively improve the model on few-shot image classficiation scenario.
arXiv Detail & Related papers (2024-07-11T10:35:53Z) - Fully Fine-tuned CLIP Models are Efficient Few-Shot Learners [8.707819647492467]
We explore capturing the task-specific information via meticulous refinement of entire Vision-Language Models (VLMs)
To mitigate these issues, we propose a framework named CLIP-CITE via designing a discriminative visual-text task.
arXiv Detail & Related papers (2024-07-04T15:22:54Z) - Boosting Vision-Language Models with Transduction [12.281505126587048]
We present TransCLIP, a novel and computationally efficient transductive approach for vision-language models.
TransCLIP is applicable as a plug-and-play module on top of popular inductive zero- and few-shot models.
arXiv Detail & Related papers (2024-06-03T23:09:30Z) - Debiasing Multimodal Large Language Models [61.6896704217147]
Large Vision-Language Models (LVLMs) have become indispensable tools in computer vision and natural language processing.
Our investigation reveals a noteworthy bias in the generated content, where the output is primarily influenced by the underlying Large Language Models (LLMs) prior to the input image.
To rectify these biases and redirect the model's focus toward vision information, we introduce two simple, training-free strategies.
arXiv Detail & Related papers (2024-03-08T12:35:07Z) - Mitigating Object Hallucination in Large Vision-Language Models via
Classifier-Free Guidance [56.04768229686853]
Large Vision-Language Models (LVLMs) tend to hallucinate non-existing objects in the images.
We introduce a framework called Mitigating hallucinAtion via classifieR-Free guIdaNcE (MARINE)
MARINE is both training-free and API-free, and can effectively and efficiently reduce object hallucinations during the generation process.
arXiv Detail & Related papers (2024-02-13T18:59:05Z) - Gradient constrained sharpness-aware prompt learning for vision-language
models [99.74832984957025]
This paper targets a novel trade-off problem in generalizable prompt learning for vision-language models (VLM)
By analyzing the loss landscapes of the state-of-the-art method and vanilla Sharpness-aware Minimization (SAM) based method, we conclude that the trade-off performance correlates to both loss value and loss sharpness.
We propose a novel SAM-based method for prompt learning, denoted as Gradient Constrained Sharpness-aware Context Optimization (GCSCoOp)
arXiv Detail & Related papers (2023-09-14T17:13:54Z) - VoLTA: Vision-Language Transformer with Weakly-Supervised Local-Feature
Alignment [52.489874804051304]
VoLTA is a new vision-language pre-training paradigm that only utilizes image-caption data but fine-grained region-level image understanding.
VoLTA pushes multi-modal fusion deep into the uni-modal backbones during pre-training.
Experiments on a wide range of vision- and vision-language downstream tasks demonstrate the effectiveness of VoLTA.
arXiv Detail & Related papers (2022-10-09T01:49:58Z) - Progressive Self-Guided Loss for Salient Object Detection [102.35488902433896]
We present a progressive self-guided loss function to facilitate deep learning-based salient object detection in images.
Our framework takes advantage of adaptively aggregated multi-scale features to locate and detect salient objects effectively.
arXiv Detail & Related papers (2021-01-07T07:33:38Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.