Two-Stage Approach for Brain MR Image Synthesis: 2D Image Synthesis and 3D Refinement
- URL: http://arxiv.org/abs/2410.10269v1
- Date: Mon, 14 Oct 2024 08:21:08 GMT
- Title: Two-Stage Approach for Brain MR Image Synthesis: 2D Image Synthesis and 3D Refinement
- Authors: Jihoon Cho, Seunghyuck Park, Jinah Park,
- Abstract summary: It is crucial to synthesize the missing MR images that reflect the unique characteristics of the absent modality with precise tumor representation.
We propose a two-stage approach that first synthesizes MR images from 2D slices using a novel intensity encoding method and then refines the synthesized MRI.
- Score: 1.5683566370372715
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Despite significant advancements in automatic brain tumor segmentation methods, their performance is not guaranteed when certain MR sequences are missing. Addressing this issue, it is crucial to synthesize the missing MR images that reflect the unique characteristics of the absent modality with precise tumor representation. Typically, MRI synthesis methods generate partial images rather than full-sized volumes due to computational constraints. This limitation can lead to a lack of comprehensive 3D volumetric information and result in image artifacts during the merging process. In this paper, we propose a two-stage approach that first synthesizes MR images from 2D slices using a novel intensity encoding method and then refines the synthesized MRI. The proposed intensity encoding reduces artifacts when synthesizing MRI on a 2D slice basis. Then, the \textit{Refiner}, which leverages complete 3D volume information, further improves the quality of the synthesized images and enhances their applicability to segmentation methods. Experimental results demonstrate that the intensity encoding effectively minimizes artifacts in the synthesized MRI and improves perceptual quality. Furthermore, using the \textit{Refiner} on synthesized MRI significantly improves brain tumor segmentation results, highlighting the potential of our approach in practical applications.
Related papers
- Towards General Text-guided Image Synthesis for Customized Multimodal Brain MRI Generation [51.28453192441364]
Multimodal brain magnetic resonance (MR) imaging is indispensable in neuroscience and neurology.
Current MR image synthesis approaches are typically trained on independent datasets for specific tasks.
We present TUMSyn, a Text-guided Universal MR image Synthesis model, which can flexibly generate brain MR images.
arXiv Detail & Related papers (2024-09-25T11:14:47Z) - Volumetric Reconstruction Resolves Off-Resonance Artifacts in Static and
Dynamic PROPELLER MRI [76.60362295758596]
Off-resonance artifacts in magnetic resonance imaging (MRI) are visual distortions that occur when the actual resonant frequencies of spins within the imaging volume differ from the expected frequencies used to encode spatial information.
We propose to resolve these artifacts by lifting the 2D MRI reconstruction problem to 3D, introducing an additional "spectral" dimension to model this off-resonance.
arXiv Detail & Related papers (2023-11-22T05:44:51Z) - BrainVoxGen: Deep learning framework for synthesis of Ultrasound to MRI [2.982610402087728]
The work proposes a novel deep-learning framework for the synthesis of three-dimensional MRI volumes from corresponding 3D ultrasound images of the brain.
This research holds promise for transformative applications in medical diagnostics and treatment planning within the neuroimaging domain.
arXiv Detail & Related papers (2023-10-11T20:37:59Z) - Make-A-Volume: Leveraging Latent Diffusion Models for Cross-Modality 3D
Brain MRI Synthesis [35.45013834475523]
Cross-modality medical image synthesis is a critical topic and has the potential to facilitate numerous applications in the medical imaging field.
Most current medical image synthesis methods rely on generative adversarial networks and suffer from notorious mode collapse and unstable training.
We introduce a new paradigm for volumetric medical data synthesis by leveraging 2D backbones and present a diffusion-based framework, Make-A-Volume.
arXiv Detail & Related papers (2023-07-19T16:01:09Z) - The Brain Tumor Segmentation (BraTS) Challenge 2023: Brain MR Image Synthesis for Tumor Segmentation (BraSyn) [9.082208613256295]
We present the establishment of the Brain MR Image Synthesis Benchmark (BraSyn) in conjunction with the Medical Image Computing and Computer-Assisted Intervention (MICCAI) 2023.
The primary objective of this challenge is to evaluate image synthesis methods that can realistically generate missing MRI modalities when multiple available images are provided.
arXiv Detail & Related papers (2023-05-15T20:49:58Z) - Spatial and Modal Optimal Transport for Fast Cross-Modal MRI Reconstruction [54.19448988321891]
We propose an end-to-end deep learning framework that utilizes T1-weighted images (T1WIs) as auxiliary modalities to expedite T2WIs' acquisitions.
We employ Optimal Transport (OT) to synthesize T2WIs by aligning T1WIs and performing cross-modal synthesis.
We prove that the reconstructed T2WIs and the synthetic T2WIs become closer on the T2 image manifold with iterations increasing.
arXiv Detail & Related papers (2023-05-04T12:20:51Z) - Adaptive Gradient Balancing for UndersampledMRI Reconstruction and
Image-to-Image Translation [60.663499381212425]
We enhance the image quality by using a Wasserstein Generative Adversarial Network combined with a novel Adaptive Gradient Balancing technique.
In MRI, our method minimizes artifacts, while maintaining a high-quality reconstruction that produces sharper images than other techniques.
arXiv Detail & Related papers (2021-04-05T13:05:22Z) - ShuffleUNet: Super resolution of diffusion-weighted MRIs using deep
learning [47.68307909984442]
Single Image Super-Resolution (SISR) is a technique aimed to obtain high-resolution (HR) details from one single low-resolution input image.
Deep learning extracts prior knowledge from big datasets and produces superior MRI images from the low-resolution counterparts.
arXiv Detail & Related papers (2021-02-25T14:52:23Z) - Lesion Mask-based Simultaneous Synthesis of Anatomic and MolecularMR
Images using a GAN [59.60954255038335]
The proposed framework consists of a stretch-out up-sampling module, a brain atlas encoder, a segmentation consistency module, and multi-scale label-wise discriminators.
Experiments on real clinical data demonstrate that the proposed model can perform significantly better than the state-of-the-art synthesis methods.
arXiv Detail & Related papers (2020-06-26T02:50:09Z) - High Tissue Contrast MRI Synthesis Using Multi-Stage Attention-GAN for
Glioma Segmentation [25.408175460840802]
This paper demonstrates the potential benefits of image-to-image translation techniques to generate synthetic high tissue contrast (HTC) images.
We adopt a new cycle generative adversarial network (CycleGAN) with an attention mechanism to increase the contrast within underlying tissues.
We show the application of our method for synthesizing HTC images on brain MR scans, including glioma tumor.
arXiv Detail & Related papers (2020-06-09T03:21:30Z) - Multi-Modality Generative Adversarial Networks with Tumor Consistency
Loss for Brain MR Image Synthesis [30.64847799586407]
We propose a multi-modality generative adversarial network (MGAN) to synthesize three high-quality MR modalities (FLAIR, T1 and T1ce) from one MR modality T2 simultaneously.
The experimental results show that the quality of the synthesized images is better than the one synthesized by the baseline model, pix2pix.
arXiv Detail & Related papers (2020-05-02T21:33:15Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.