High Tissue Contrast MRI Synthesis Using Multi-Stage Attention-GAN for
Glioma Segmentation
- URL: http://arxiv.org/abs/2006.05030v1
- Date: Tue, 9 Jun 2020 03:21:30 GMT
- Title: High Tissue Contrast MRI Synthesis Using Multi-Stage Attention-GAN for
Glioma Segmentation
- Authors: Mohammad Hamghalam, Baiying Lei, Tianfu Wang
- Abstract summary: This paper demonstrates the potential benefits of image-to-image translation techniques to generate synthetic high tissue contrast (HTC) images.
We adopt a new cycle generative adversarial network (CycleGAN) with an attention mechanism to increase the contrast within underlying tissues.
We show the application of our method for synthesizing HTC images on brain MR scans, including glioma tumor.
- Score: 25.408175460840802
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Magnetic resonance imaging (MRI) provides varying tissue contrast images of
internal organs based on a strong magnetic field. Despite the non-invasive
advantage of MRI in frequent imaging, the low contrast MR images in the target
area make tissue segmentation a challenging problem. This paper demonstrates
the potential benefits of image-to-image translation techniques to generate
synthetic high tissue contrast (HTC) images. Notably, we adopt a new cycle
generative adversarial network (CycleGAN) with an attention mechanism to
increase the contrast within underlying tissues. The attention block, as well
as training on HTC images, guides our model to converge on certain tissues. To
increase the resolution of HTC images, we employ multi-stage architecture to
focus on one particular tissue as a foreground and filter out the irrelevant
background in each stage. This multi-stage structure also alleviates the common
artifacts of the synthetic images by decreasing the gap between source and
target domains. We show the application of our method for synthesizing HTC
images on brain MR scans, including glioma tumor. We also employ HTC MR images
in both the end-to-end and two-stage segmentation structure to confirm the
effectiveness of these images. The experiments over three competitive
segmentation baselines on BraTS 2018 dataset indicate that incorporating the
synthetic HTC images in the multi-modal segmentation framework improves the
average Dice scores 0.8%, 0.6%, and 0.5% on the whole tumor, tumor core, and
enhancing tumor, respectively, while eliminating one real MRI sequence from the
segmentation procedure.
Related papers
- Two-Stage Approach for Brain MR Image Synthesis: 2D Image Synthesis and 3D Refinement [1.5683566370372715]
It is crucial to synthesize the missing MR images that reflect the unique characteristics of the absent modality with precise tumor representation.
We propose a two-stage approach that first synthesizes MR images from 2D slices using a novel intensity encoding method and then refines the synthesized MRI.
arXiv Detail & Related papers (2024-10-14T08:21:08Z) - NeuroPictor: Refining fMRI-to-Image Reconstruction via Multi-individual Pretraining and Multi-level Modulation [55.51412454263856]
This paper proposes to directly modulate the generation process of diffusion models using fMRI signals.
By training with about 67,000 fMRI-image pairs from various individuals, our model enjoys superior fMRI-to-image decoding capacity.
arXiv Detail & Related papers (2024-03-27T02:42:52Z) - Volumetric Reconstruction Resolves Off-Resonance Artifacts in Static and
Dynamic PROPELLER MRI [76.60362295758596]
Off-resonance artifacts in magnetic resonance imaging (MRI) are visual distortions that occur when the actual resonant frequencies of spins within the imaging volume differ from the expected frequencies used to encode spatial information.
We propose to resolve these artifacts by lifting the 2D MRI reconstruction problem to 3D, introducing an additional "spectral" dimension to model this off-resonance.
arXiv Detail & Related papers (2023-11-22T05:44:51Z) - Enhanced Synthetic MRI Generation from CT Scans Using CycleGAN with
Feature Extraction [3.2088888904556123]
We propose an approach for enhanced monomodal registration using synthetic MRI images from CT scans.
Our methodology shows promising results, outperforming several state-of-the-art methods.
arXiv Detail & Related papers (2023-10-31T16:39:56Z) - Style transfer between Microscopy and Magnetic Resonance Imaging via
Generative Adversarial Network in small sample size settings [49.84018914962972]
Cross-modal augmentation of Magnetic Resonance Imaging (MRI) and microscopic imaging based on the same tissue samples is promising.
We tested a method for generating microscopic histological images from MRI scans of the corpus callosum using conditional generative adversarial network (cGAN) architecture.
arXiv Detail & Related papers (2023-10-16T13:58:53Z) - On Sensitivity and Robustness of Normalization Schemes to Input
Distribution Shifts in Automatic MR Image Diagnosis [58.634791552376235]
Deep Learning (DL) models have achieved state-of-the-art performance in diagnosing multiple diseases using reconstructed images as input.
DL models are sensitive to varying artifacts as it leads to changes in the input data distribution between the training and testing phases.
We propose to use other normalization techniques, such as Group Normalization and Layer Normalization, to inject robustness into model performance against varying image artifacts.
arXiv Detail & Related papers (2023-06-23T03:09:03Z) - The Brain Tumor Segmentation (BraTS) Challenge 2023: Brain MR Image Synthesis for Tumor Segmentation (BraSyn) [9.082208613256295]
We present the establishment of the Brain MR Image Synthesis Benchmark (BraSyn) in conjunction with the Medical Image Computing and Computer-Assisted Intervention (MICCAI) 2023.
The primary objective of this challenge is to evaluate image synthesis methods that can realistically generate missing MRI modalities when multiple available images are provided.
arXiv Detail & Related papers (2023-05-15T20:49:58Z) - Model-Guided Multi-Contrast Deep Unfolding Network for MRI
Super-resolution Reconstruction [68.80715727288514]
We show how to unfold an iterative MGDUN algorithm into a novel model-guided deep unfolding network by taking the MRI observation matrix.
In this paper, we propose a novel Model-Guided interpretable Deep Unfolding Network (MGDUN) for medical image SR reconstruction.
arXiv Detail & Related papers (2022-09-15T03:58:30Z) - ShuffleUNet: Super resolution of diffusion-weighted MRIs using deep
learning [47.68307909984442]
Single Image Super-Resolution (SISR) is a technique aimed to obtain high-resolution (HR) details from one single low-resolution input image.
Deep learning extracts prior knowledge from big datasets and produces superior MRI images from the low-resolution counterparts.
arXiv Detail & Related papers (2021-02-25T14:52:23Z) - Dual-cycle Constrained Bijective VAE-GAN For Tagged-to-Cine Magnetic
Resonance Image Synthesis [11.697141493937021]
We propose a novel VAE-GAN approach to carry out tagged-to-cine MR image synthesis.
Our framework has been trained, validated, and tested using 1,768, 416, and 1,560 subject-independent paired slices of tagged and cine MRI.
arXiv Detail & Related papers (2021-01-14T03:27:16Z) - Multi-Modality Generative Adversarial Networks with Tumor Consistency
Loss for Brain MR Image Synthesis [30.64847799586407]
We propose a multi-modality generative adversarial network (MGAN) to synthesize three high-quality MR modalities (FLAIR, T1 and T1ce) from one MR modality T2 simultaneously.
The experimental results show that the quality of the synthesized images is better than the one synthesized by the baseline model, pix2pix.
arXiv Detail & Related papers (2020-05-02T21:33:15Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.