論文の概要: Trust or Bust: Ensuring Trustworthiness in Autonomous Weapon Systems
- arxiv url: http://arxiv.org/abs/2410.10284v3
- Date: Mon, 21 Oct 2024 05:22:13 GMT
- ステータス: 処理完了
- システム内更新日: 2024-10-29 22:34:36.418470
- Title: Trust or Bust: Ensuring Trustworthiness in Autonomous Weapon Systems
- Title(参考訳): 信頼かバストか - 自律兵器システムにおける信頼の確保
- Authors: Kasper Cools, Clara Maathuis,
- Abstract要約: 本稿では,自律兵器システム(AWS)における信頼の多面的性質について考察する。
バイアス、運用上の障害、説明責任に関連するリスクを軽減するために、信頼性と透明性を備えたシステムを確立する必要性を強調します。
技術者、倫理学者、軍事戦略家を含む協力的なアプローチを提唱し、現在進行中の課題に対処する。
- 参考スコア(独自算出の注目度): 0.0
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: The integration of Autonomous Weapon Systems (AWS) into military operations presents both significant opportunities and challenges. This paper explores the multifaceted nature of trust in AWS, emphasising the necessity of establishing reliable and transparent systems to mitigate risks associated with bias, operational failures, and accountability. Despite advancements in Artificial Intelligence (AI), the trustworthiness of these systems, especially in high-stakes military applications, remains a critical issue. Through a systematic review of existing literature, this research identifies gaps in the understanding of trust dynamics during the development and deployment phases of AWS. It advocates for a collaborative approach that includes technologists, ethicists, and military strategists to address these ongoing challenges. The findings underscore the importance of Human-Machine teaming and enhancing system intelligibility to ensure accountability and adherence to International Humanitarian Law. Ultimately, this paper aims to contribute to the ongoing discourse on the ethical implications of AWS and the imperative for trustworthy AI in defense contexts.
- Abstract(参考訳): AWS(Autonomous Weapon Systems)の軍事運用への統合は、大きな機会と課題の両方を提示している。
本稿では、バイアス、運用上の障害、説明責任に関連するリスクを軽減するために、信頼性と透明性を備えたシステムを確立することの必要性を強調し、AWSにおける信頼性の多面的な性質について考察する。
人工知能(AI)の進歩にもかかわらず、これらのシステムの信頼性は特に高い軍事的応用において重要な問題である。
既存の文献の体系的なレビューを通じて、この研究は、AWSの開発およびデプロイフェーズにおける信頼ダイナミクスの理解のギャップを特定する。
技術者、倫理学者、軍事戦略家を含む協力的なアプローチを提唱し、現在進行中の課題に対処する。
この発見は、国際人道法への説明責任と遵守を確保するために、人間-機械のチーム化とシステムインテリジェンスの向上の重要性を浮き彫りにした。
最終的に、この論文は、AWSの倫理的意味に関する継続的な議論と、防衛状況における信頼に値するAIの衝動に寄与することを目的としている。
関連論文リスト
- Attack Atlas: A Practitioner's Perspective on Challenges and Pitfalls in Red Teaming GenAI [52.138044013005]
生成AI、特に大規模言語モデル(LLM)は、製品アプリケーションにますます統合される。
新たな攻撃面と脆弱性が出現し、自然言語やマルチモーダルシステムにおける敵の脅威に焦点を当てる。
レッドチーム(英語版)はこれらのシステムの弱点を積極的に識別する上で重要となり、ブルーチーム(英語版)はそのような敵の攻撃から保護する。
この研究は、生成AIシステムの保護のための学術的な洞察と実践的なセキュリティ対策のギャップを埋めることを目的としている。
論文 参考訳(メタデータ) (2024-09-23T10:18:10Z) - Trustworthy and Responsible AI for Human-Centric Autonomous Decision-Making Systems [2.444630714797783]
我々は、AIバイアス、定義、検出と緩和の方法、およびバイアスを評価するメトリクスの複雑さをレビューし、議論する。
また、人間中心の意思決定のさまざまな領域におけるAIの信頼性と広範な適用に関して、オープンな課題についても論じる。
論文 参考訳(メタデータ) (2024-08-28T06:04:25Z) - AI Risk Management Should Incorporate Both Safety and Security [185.68738503122114]
AIリスクマネジメントの利害関係者は、安全とセキュリティの間のニュアンス、シナジー、相互作用を意識すべきである、と私たちは主張する。
我々は、AIの安全性とAIのセキュリティの違いと相互作用を明らかにするために、統一された参照フレームワークを導入する。
論文 参考訳(メタデータ) (2024-05-29T21:00:47Z) - Quantifying AI Vulnerabilities: A Synthesis of Complexity, Dynamical Systems, and Game Theory [0.0]
システム複雑度指数(SCI)、Lyapunov Exponent for AI stability(LEAIS)、Nash Equilibrium Robustness(NER)の3つの指標を導入する新しいアプローチを提案する。
SCIはAIシステムの固有の複雑さを定量化し、LEAISはその安定性と摂動に対する感受性を捉え、NERは敵の操作に対する戦略的堅牢性を評価する。
論文 参考訳(メタデータ) (2024-04-07T07:05:59Z) - Testing autonomous vehicles and AI: perspectives and challenges from cybersecurity, transparency, robustness and fairness [53.91018508439669]
この研究は、人工知能を自律走行車(AV)に統合する複雑さを探求する
AIコンポーネントがもたらした課題と、テスト手順への影響を調べます。
本稿は、重要な課題を特定し、AV技術におけるAIの研究・開発に向けた今後の方向性を提案する。
論文 参考訳(メタデータ) (2024-02-21T08:29:42Z) - Towards Responsible AI in Banking: Addressing Bias for Fair
Decision-Making [69.44075077934914]
責任AI(Responsible AI)は、企業文化の発展におけるバイアスに対処する重要な性質を強調している。
この論文は、バイアスを理解すること、バイアスを緩和すること、バイアスを説明することの3つの基本的な柱に基づいて構成されている。
オープンソースの原則に従って、アクセス可能なPythonパッケージとして、Bias On DemandとFairViewをリリースしました。
論文 参考訳(メタデータ) (2024-01-13T14:07:09Z) - A Case for Competent AI Systems $-$ A Concept Note [0.3626013617212666]
このノートは、AIシステム内の能力の概念を探求し、システムが提供しようとしているものを表現している。
この能力の達成は、実装とテストの欠陥によって妨げられる可能性がある。
タスクを効果的に実行するAIシステムの能力を明らかにする上で、中心的な課題が発生する。
論文 参考訳(メタデータ) (2023-11-28T09:21:03Z) - Trustworthy AI: From Principles to Practices [44.67324097900778]
多くの現在のAIシステムは、認識不能な攻撃に脆弱で、表現不足なグループに偏り、ユーザのプライバシ保護が欠如していることが判明した。
このレビューでは、信頼できるAIシステムを構築するための包括的なガイドとして、AI実践者に提供したいと思っています。
信頼に値するAIに対する現在の断片化されたアプローチを統合するために、AIシステムのライフサイクル全体を考慮した体系的なアプローチを提案する。
論文 参考訳(メタデータ) (2021-10-04T03:20:39Z) - Towards a Policy-as-a-Service Framework to Enable Compliant, Trustworthy
AI and HRI Systems in the Wild [7.225523345649149]
信頼できる自律システムの構築は、単に「常に正しいことをする」エージェントを雇おうとする以上の多くの理由から難しい。
AIとHRIには、信頼の問題は本質的に社会技術的である、というより広い文脈がある。
本稿では, 信頼性の「ファジィ」な社会技術的側面と, 設計・展開の両面での配慮の必要性を強調した。
論文 参考訳(メタデータ) (2020-10-06T18:32:31Z) - Toward Trustworthy AI Development: Mechanisms for Supporting Verifiable
Claims [59.64274607533249]
AI開発者は、責任を負うことのできる検証可能な主張をする必要がある。
このレポートは、さまざまな利害関係者がAIシステムに関するクレームの妥当性を改善するための様々なステップを示唆している。
我々は、この目的のための10のメカニズム、すなわち、組織、ソフトウェア、ハードウェアを分析し、それらのメカニズムの実装、探索、改善を目的とした推奨を行う。
論文 参考訳(メタデータ) (2020-04-15T17:15:35Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。