論文の概要: Quantifying AI Vulnerabilities: A Synthesis of Complexity, Dynamical Systems, and Game Theory
- arxiv url: http://arxiv.org/abs/2404.10782v1
- Date: Sun, 7 Apr 2024 07:05:59 GMT
- ステータス: 処理完了
- システム内更新日: 2024-04-21 19:45:03.193206
- Title: Quantifying AI Vulnerabilities: A Synthesis of Complexity, Dynamical Systems, and Game Theory
- Title(参考訳): AI脆弱性の定量化:複雑度、力学系、ゲーム理論の合成
- Authors: B Kereopa-Yorke,
- Abstract要約: システム複雑度指数(SCI)、Lyapunov Exponent for AI stability(LEAIS)、Nash Equilibrium Robustness(NER)の3つの指標を導入する新しいアプローチを提案する。
SCIはAIシステムの固有の複雑さを定量化し、LEAISはその安定性と摂動に対する感受性を捉え、NERは敵の操作に対する戦略的堅牢性を評価する。
- 参考スコア(独自算出の注目度): 0.0
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: The rapid integration of Artificial Intelligence (AI) systems across critical domains necessitates robust security evaluation frameworks. We propose a novel approach that introduces three metrics: System Complexity Index (SCI), Lyapunov Exponent for AI Stability (LEAIS), and Nash Equilibrium Robustness (NER). SCI quantifies the inherent complexity of an AI system, LEAIS captures its stability and sensitivity to perturbations, and NER evaluates its strategic robustness against adversarial manipulation. Through comparative analysis, we demonstrate the advantages of our framework over existing techniques. We discuss the theoretical and practical implications, potential applications, limitations, and future research directions. Our work contributes to the development of secure and trustworthy AI technologies by providing a holistic, theoretically grounded approach to AI security evaluation. As AI continues to advance, prioritising and advancing AI security through interdisciplinary collaboration is crucial to ensure its responsible deployment for the benefit of society.
- Abstract(参考訳): 重要なドメインにまたがる人工知能(AI)システムの迅速な統合は、堅牢なセキュリティ評価フレームワークを必要とする。
システム複雑度指数(SCI)、Lyapunov Exponent for AI stability(LEAIS)、Nash Equilibrium Robustness(NER)の3つの指標を導入する新しいアプローチを提案する。
SCIはAIシステムの固有の複雑さを定量化し、LEAISはその安定性と摂動に対する感受性を捉え、NERは敵の操作に対する戦略的堅牢性を評価する。
比較分析を通じて、既存の手法よりもフレームワークの利点を実証する。
理論的・実践的な意味、潜在的な応用、限界、今後の研究の方向性について論じる。
我々の研究は、AIセキュリティ評価に対する総合的、理論的に基礎的なアプローチを提供することによって、安全で信頼性の高いAI技術の開発に貢献します。
AIが進歩を続けるにつれて、学際的なコラボレーションによるAIセキュリティの優先順位付けと推進は、社会の利益のためにその責任を負うことを保証するために不可欠である。
関連論文リスト
- Imagining and building wise machines: The centrality of AI metacognition [78.76893632793497]
AIシステムは知恵を欠いている。
AI研究はタスクレベルの戦略に焦点を当てているが、メタ認知はAIシステムでは未発達である。
メタ認知機能をAIシステムに統合することは、その堅牢性、説明可能性、協力性、安全性を高めるために不可欠である。
論文 参考訳(メタデータ) (2024-11-04T18:10:10Z) - AI-Driven Human-Autonomy Teaming in Tactical Operations: Proposed Framework, Challenges, and Future Directions [10.16399860867284]
人工知能(AI)技術は、人間の意思決定能力を増強することで戦術的操作を変革している。
本稿では,AI駆動型人間自律チーム(HAT)を変革的アプローチとして検討する。
我々はAI駆動型HATの重要なコンポーネントに対処する包括的フレームワークを提案する。
論文 参考訳(メタデータ) (2024-10-28T15:05:16Z) - Engineering Trustworthy AI: A Developer Guide for Empirical Risk Minimization [53.80919781981027]
信頼できるAIのための重要な要件は、経験的リスク最小化のコンポーネントの設計選択に変換できる。
私たちは、AIの信頼性の新たな標準を満たすAIシステムを構築するための実用的なガイダンスを提供したいと思っています。
論文 参考訳(メタデータ) (2024-10-25T07:53:32Z) - Towards Guaranteed Safe AI: A Framework for Ensuring Robust and Reliable AI Systems [88.80306881112313]
我々は、AI安全性に対する一連のアプローチを紹介し、定義する。
これらのアプローチの中核的な特徴は、高保証の定量的安全性保証を備えたAIシステムを作ることである。
これら3つのコアコンポーネントをそれぞれ作成するためのアプローチを概説し、主な技術的課題を説明し、それらに対する潜在的なソリューションをいくつか提案します。
論文 参考訳(メタデータ) (2024-05-10T17:38:32Z) - Managing extreme AI risks amid rapid progress [171.05448842016125]
我々は、大規模社会被害、悪意のある使用、自律型AIシステムに対する人間の制御の不可逆的な喪失を含むリスクについて説明する。
このようなリスクがどのように発生し、どのように管理するかについては、合意の欠如があります。
現在のガバナンスイニシアチブには、誤用や無謀を防ぎ、自律システムにほとんど対処するメカニズムや制度が欠けている。
論文 参考訳(メタデータ) (2023-10-26T17:59:06Z) - AI Potentiality and Awareness: A Position Paper from the Perspective of
Human-AI Teaming in Cybersecurity [18.324118502535775]
我々は、人間とAIのコラボレーションはサイバーセキュリティに価値があると論じている。
私たちは、AIの計算能力と人間の専門知識を取り入れたバランスのとれたアプローチの重要性を強調します。
論文 参考訳(メタデータ) (2023-09-28T01:20:44Z) - AI Maintenance: A Robustness Perspective [91.28724422822003]
我々は、AIライフサイクルにおけるロバストネスの課題を強調し、自動車のメンテナンスに類似させることで、AIのメンテナンスを動機付ける。
本稿では,ロバストネスリスクの検出と軽減を目的としたAIモデル検査フレームワークを提案する。
我々のAIメンテナンスの提案は、AIライフサイクル全体を通して堅牢性評価、状態追跡、リスクスキャン、モデル硬化、規制を促進する。
論文 参考訳(メタデータ) (2023-01-08T15:02:38Z) - Proceedings of the Robust Artificial Intelligence System Assurance
(RAISA) Workshop 2022 [0.0]
RAISAワークショップは、堅牢な人工知能(AI)と機械学習(ML)システムの研究、開発、応用に焦点を当てる。
特定のMLアルゴリズムに関してロバストネスを研究するのではなく、システムアーキテクチャのレベルでロバストネスの保証を検討することを目的としています。
論文 参考訳(メタデータ) (2022-02-10T01:15:50Z) - Trustworthy AI: From Principles to Practices [44.67324097900778]
多くの現在のAIシステムは、認識不能な攻撃に脆弱で、表現不足なグループに偏り、ユーザのプライバシ保護が欠如していることが判明した。
このレビューでは、信頼できるAIシステムを構築するための包括的なガイドとして、AI実践者に提供したいと思っています。
信頼に値するAIに対する現在の断片化されたアプローチを統合するために、AIシステムのライフサイクル全体を考慮した体系的なアプローチを提案する。
論文 参考訳(メタデータ) (2021-10-04T03:20:39Z) - An interdisciplinary conceptual study of Artificial Intelligence (AI)
for helping benefit-risk assessment practices: Towards a comprehensive
qualification matrix of AI programs and devices (pre-print 2020) [55.41644538483948]
本稿では,インテリジェンスの概念に対処するさまざまな分野の既存の概念を包括的に分析する。
目的は、AIシステムを評価するための共有概念や相違点を特定することである。
論文 参考訳(メタデータ) (2021-05-07T12:01:31Z) - AAAI FSS-19: Human-Centered AI: Trustworthiness of AI Models and Data
Proceedings [8.445274192818825]
予測モデルは不確実性を認識し、信頼できる予測をもたらすことが不可欠である。
このシンポジウムの焦点は、データ品質と技術的堅牢性と安全性を改善するAIシステムであった。
広く定義された領域からの提出はまた、説明可能なモデル、人間の信頼、AIの倫理的側面といった要求に対処するアプローチについても論じた。
論文 参考訳(メタデータ) (2020-01-15T15:30:29Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。