論文の概要: Few-shot Deep Representation Learning based on Information Bottleneck
Principle
- arxiv url: http://arxiv.org/abs/2111.12950v1
- Date: Thu, 25 Nov 2021 07:15:12 GMT
- ステータス: 処理完了
- システム内更新日: 2021-12-04 20:45:52.532983
- Title: Few-shot Deep Representation Learning based on Information Bottleneck
Principle
- Title(参考訳): 情報ボトルネック原理に基づくマイナショット深部表現学習
- Authors: Shin Ando
- Abstract要約: 標準異常検出問題では、サンプルが正規データの単一ソースから生成されたと仮定して、教師なしの設定で検出モデルを訓練する。
実際には、通常データは複数のクラスから構成されることが多いが、このような設定では、大規模ラベル付きデータを持たない通常のクラス間の相違点において、通常のインスタンスと異常を区別する学習が大きな課題となっている。
本研究では,通常のクラスからサンプルを少数用意することで,この課題を克服しようと試みるが,これは過度にコストがかかるものではない。
- 参考スコア(独自算出の注目度): 0.0
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: In a standard anomaly detection problem, a detection model is trained in an
unsupervised setting, under an assumption that the samples were generated from
a single source of normal data. In practice, however, normal data often consist
of multiple classes. In such settings, learning to differentiate between normal
instances and anomalies among discrepancies between normal classes without
large-scale labeled data presents a significant challenge. In this work, we
attempt to overcome this challenge by preparing few examples from each normal
class, which is not excessively costly. The above setting can also be described
as a few-shot learning for multiple, normal classes, with the goal of learning
a useful representation for anomaly detection. In order to utilize the limited
labeled examples in training, we integrate the inter-class distances among the
labeled examples in the deep feature space into the MAP loss. We derive their
relations from an information-theoretic principle. Our empirical study shows
that the proposed model improves the segmentation of normal classes in the deep
feature space which contributes to identifying the anomaly class examples.
- Abstract(参考訳): 標準異常検出問題において、サンプルが1つの正規データソースから生成されたと仮定して、検出モデルを教師なし設定で訓練する。
しかし実際には、通常のデータは複数のクラスから構成されることが多い。
このような環境では、大規模なラベル付きデータなしで通常のインスタンスと通常のクラス間の差異を区別する学習が大きな課題となっている。
本研究では,本課題を克服するために,各正規クラスから少数の例を用意し,過大なコストは発生しない。
上記の設定は、異常検出に有用な表現を学ぶことを目的として、複数の通常のクラスに対する数ショットの学習として記述することもできる。
学習におけるラベル付き例を限定的に活用するために,深部特徴空間におけるラベル付き例間のクラス間距離をMAP損失に統合する。
我々はそれらの関係を情報理論の原理から導出する。
実験により,提案モデルが,異常クラスの例の同定に寄与する深層特徴空間における正規クラスのセグメンテーションを改善することを示した。
関連論文リスト
- Anomaly Detection by Context Contrasting [57.695202846009714]
異常検出は、標準から逸脱するサンプルを特定することに焦点を当てる。
近年の自己教師型学習の進歩は、この点において大きな可能性を秘めている。
本稿では、通常のトレーニングデータを異なるコンテキストに設定することで、この問題に対処するCon2を提案する。
より現実的な医療環境では,様々なベンチマークで最先端のパフォーマンスを実現しつつ,優れたパフォーマンスを実現している。
論文 参考訳(メタデータ) (2024-05-29T07:59:06Z) - Toward Generalist Anomaly Detection via In-context Residual Learning with Few-shot Sample Prompts [25.629973843455495]
Generalist Anomaly Detection (GAD)は、ターゲットデータにさらなるトレーニングを加えることなく、さまざまなアプリケーションドメインからさまざまなデータセットの異常を検出するために一般化可能な、単一の検出モデルをトレーニングすることを目的としている。
InCTRLと呼ばれるGADのための文脈内残差学習モデルを学習する新しい手法を提案する。
InCTRLは最高のパフォーマーであり、最先端の競合手法を著しく上回っている。
論文 参考訳(メタデータ) (2024-03-11T08:07:46Z) - Few-shot Anomaly Detection in Text with Deviation Learning [13.957106119614213]
偏差学習を用いたエンドツーエンド手法で異常スコアを明示的に学習するフレームワークであるFATEを紹介する。
本モデルは,マルチヘッド・セルフアテンション・レイヤと複数インスタンス・ラーニング・アプローチを用いて,異常の異なる振る舞いを学習するために最適化されている。
論文 参考訳(メタデータ) (2023-08-22T20:40:21Z) - Unsupervised Deep One-Class Classification with Adaptive Threshold based
on Training Dynamics [11.047949973156836]
疑似ラベル付き正規標本から正規性を学習する,教師なしの深層一階分類を提案する。
10個の異常検出ベンチマークによる実験結果から,本手法は大規模マージンによる異常検出性能を効果的に向上することが示された。
論文 参考訳(メタデータ) (2023-02-13T01:51:34Z) - Self-Supervised Training with Autoencoders for Visual Anomaly Detection [61.62861063776813]
我々は, 正規サンプルの分布を低次元多様体で支持する異常検出において, 特定のユースケースに焦点を当てた。
我々は、訓練中に識別情報を活用する自己指導型学習体制に適応するが、通常の例のサブ多様体に焦点をあてる。
製造領域における視覚異常検出のための挑戦的なベンチマークであるMVTec ADデータセットで、最先端の新たな結果を達成する。
論文 参考訳(メタデータ) (2022-06-23T14:16:30Z) - Explainable Deep Few-shot Anomaly Detection with Deviation Networks [123.46611927225963]
本稿では,弱い教師付き異常検出フレームワークを導入し,検出モデルを訓練する。
提案手法は,ラベル付き異常と事前確率を活用することにより,識別正規性を学習する。
我々のモデルはサンプル効率が高く頑健であり、クローズドセットとオープンセットの両方の設定において最先端の競合手法よりもはるかに優れている。
論文 参考訳(メタデータ) (2021-08-01T14:33:17Z) - Deep Visual Anomaly detection with Negative Learning [18.79849041106952]
本稿では、異常検出の強化に負の学習概念を用いる、負の学習を伴う異常検出(ADNL)を提案する。
その考え方は、与えられた少数の異常例を用いて生成モデルの再構成能力を制限することである。
このようにして、ネットワークは通常のデータを再構築することを学ぶだけでなく、異常の可能性のある分布から遠く離れた正規分布を囲む。
論文 参考訳(メタデータ) (2021-05-24T01:48:44Z) - Toward Deep Supervised Anomaly Detection: Reinforcement Learning from
Partially Labeled Anomaly Data [150.9270911031327]
本稿では,一部のラベル付き異常事例と大規模ラベルなしデータセットを用いた異常検出の問題点について考察する。
既存の関連手法は、通常、一連の異常にまたがらない限られた異常例にのみ適合するか、ラベルのないデータから教師なしの学習を進めるかのいずれかである。
そこで本研究では,ラベル付きおよびラベルなし両方の異常の検出をエンドツーエンドに最適化する,深層強化学習に基づくアプローチを提案する。
論文 参考訳(メタデータ) (2020-09-15T03:05:39Z) - A Background-Agnostic Framework with Adversarial Training for Abnormal
Event Detection in Video [120.18562044084678]
近年,ビデオにおける異常事象検出は複雑なコンピュータビジョンの問題として注目されている。
通常のイベントのみを含むトレーニングビデオから学習するバックグラウンドに依存しないフレームワークを提案する。
論文 参考訳(メタデータ) (2020-08-27T18:39:24Z) - Deep Weakly-supervised Anomaly Detection [118.55172352231381]
ペアワイズ関係予測ネットワーク(PReNet)は、ペアワイズ関係の特徴と異常スコアを学習する。
PReNetは、学習したペアの異常パターンに適合する見知らぬ異常を検出できる。
12の実世界のデータセットに対する実証的な結果から、PReNetは目に見えない異常や異常を検知する9つの競合する手法を著しく上回っている。
論文 参考訳(メタデータ) (2019-10-30T00:40:25Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。