Feature Averaging: An Implicit Bias of Gradient Descent Leading to Non-Robustness in Neural Networks
- URL: http://arxiv.org/abs/2410.10322v2
- Date: Sat, 01 Mar 2025 04:06:51 GMT
- Title: Feature Averaging: An Implicit Bias of Gradient Descent Leading to Non-Robustness in Neural Networks
- Authors: Binghui Li, Zhixuan Pan, Kaifeng Lyu, Jian Li,
- Abstract summary: We show that neural networks trained by gradient descent tend to rely on an average of features for classification.<n>We prove that gradient descent biases the network towards feature averaging, where the weights of each hidden neuron represent an average of the cluster centers.<n>We prove that a two-layer ReLU network can achieve optimal robustness when trained to classify individual features.
- Score: 13.983863226803336
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: In this work, we investigate a particular implicit bias in gradient descent training, which we term "Feature Averaging," and argue that it is one of the principal factors contributing to the non-robustness of deep neural networks. We show that, even when multiple discriminative features are present in the input data, neural networks trained by gradient descent tend to rely on an average (or a certain combination) of these features for classification, rather than distinguishing and leveraging each feature individually. Specifically, we provide a detailed theoretical analysis of the training dynamics of two-layer ReLU networks on a binary classification task, where the data distribution consists of multiple clusters with mutually orthogonal centers. We rigorously prove that gradient descent biases the network towards feature averaging, where the weights of each hidden neuron represent an average of the cluster centers (each corresponding to a distinct feature), thereby making the network vulnerable to input perturbations aligned with the negative direction of the averaged features. On the positive side, we demonstrate that this vulnerability can be mitigated through more granular supervision. In particular, we prove that a two-layer ReLU network can achieve optimal robustness when trained to classify individual features rather than merely the original binary classes. Finally, we validate our theoretical findings with experiments on synthetic datasets, MNIST, and CIFAR-10, and confirm the prevalence of feature averaging and its impact on adversarial robustness. We hope these theoretical and empirical insights deepen the understanding of how gradient descent shapes feature learning and adversarial robustness, and how more detailed supervision can enhance robustness.
Related papers
- Global Convergence and Rich Feature Learning in $L$-Layer Infinite-Width Neural Networks under $μ$P Parametrization [66.03821840425539]
In this paper, we investigate the training dynamics of $L$-layer neural networks using the tensor gradient program (SGD) framework.
We show that SGD enables these networks to learn linearly independent features that substantially deviate from their initial values.
This rich feature space captures relevant data information and ensures that any convergent point of the training process is a global minimum.
arXiv Detail & Related papers (2025-03-12T17:33:13Z) - Adversarial Training Can Provably Improve Robustness: Theoretical Analysis of Feature Learning Process Under Structured Data [38.44734564565478]
We provide a theoretical understanding of adversarial examples and adversarial training algorithms from the perspective of feature learning theory.
We show that the adversarial training method can provably strengthen the robust feature learning and suppress the non-robust feature learning.
arXiv Detail & Related papers (2024-10-11T03:59:49Z) - Coding schemes in neural networks learning classification tasks [52.22978725954347]
We investigate fully-connected, wide neural networks learning classification tasks.
We show that the networks acquire strong, data-dependent features.
Surprisingly, the nature of the internal representations depends crucially on the neuronal nonlinearity.
arXiv Detail & Related papers (2024-06-24T14:50:05Z) - Simplicity Bias of Two-Layer Networks beyond Linearly Separable Data [4.14360329494344]
We characterize simplicity bias for general datasets in the context of two-layer neural networks with small weights and trained with gradient flow.
For datasets with an XOR-like pattern, we precisely identify the learned features and demonstrate that simplicity bias intensifies during later training stages.
These results indicate that features learned in the middle stages of training may be more useful for OOD transfer.
arXiv Detail & Related papers (2024-05-27T16:00:45Z) - Understanding Deep Representation Learning via Layerwise Feature
Compression and Discrimination [33.273226655730326]
We show that each layer of a deep linear network progressively compresses within-class features at a geometric rate and discriminates between-class features at a linear rate.
This is the first quantitative characterization of feature evolution in hierarchical representations of deep linear networks.
arXiv Detail & Related papers (2023-11-06T09:00:38Z) - Addressing caveats of neural persistence with deep graph persistence [54.424983583720675]
We find that the variance of network weights and spatial concentration of large weights are the main factors that impact neural persistence.
We propose an extension of the filtration underlying neural persistence to the whole neural network instead of single layers.
This yields our deep graph persistence measure, which implicitly incorporates persistent paths through the network and alleviates variance-related issues.
arXiv Detail & Related papers (2023-07-20T13:34:11Z) - Neural networks trained with SGD learn distributions of increasing
complexity [78.30235086565388]
We show that neural networks trained using gradient descent initially classify their inputs using lower-order input statistics.
We then exploit higher-order statistics only later during training.
We discuss the relation of DSB to other simplicity biases and consider its implications for the principle of universality in learning.
arXiv Detail & Related papers (2022-11-21T15:27:22Z) - Discriminability-enforcing loss to improve representation learning [20.4701676109641]
We introduce a new loss term inspired by the Gini impurity to minimize the entropy of individual high-level features.
Although our Gini loss induces highly-discriminative features, it does not ensure that the distribution of the high-level features matches the distribution of the classes.
Our empirical results show that integrating our novel loss terms into the training objective consistently outperforms the models trained with cross-entropy alone.
arXiv Detail & Related papers (2022-02-14T22:31:37Z) - Data-driven emergence of convolutional structure in neural networks [83.4920717252233]
We show how fully-connected neural networks solving a discrimination task can learn a convolutional structure directly from their inputs.
By carefully designing data models, we show that the emergence of this pattern is triggered by the non-Gaussian, higher-order local structure of the inputs.
arXiv Detail & Related papers (2022-02-01T17:11:13Z) - With Greater Distance Comes Worse Performance: On the Perspective of
Layer Utilization and Model Generalization [3.6321778403619285]
Generalization of deep neural networks remains one of the main open problems in machine learning.
Early layers generally learn representations relevant to performance on both training data and testing data.
Deeper layers only minimize training risks and fail to generalize well with testing or mislabeled data.
arXiv Detail & Related papers (2022-01-28T05:26:32Z) - Efficient and Robust Classification for Sparse Attacks [34.48667992227529]
We consider perturbations bounded by the $ell$--norm, which have been shown as effective attacks in the domains of image-recognition, natural language processing, and malware-detection.
We propose a novel defense method that consists of "truncation" and "adrial training"
Motivated by the insights we obtain, we extend these components to neural network classifiers.
arXiv Detail & Related papers (2022-01-23T21:18:17Z) - The Interplay Between Implicit Bias and Benign Overfitting in Two-Layer
Linear Networks [51.1848572349154]
neural network models that perfectly fit noisy data can generalize well to unseen test data.
We consider interpolating two-layer linear neural networks trained with gradient flow on the squared loss and derive bounds on the excess risk.
arXiv Detail & Related papers (2021-08-25T22:01:01Z) - Intraclass clustering: an implicit learning ability that regularizes
DNNs [22.732204569029648]
We show that deep neural networks are regularized through their ability to extract meaningful clusters among a class.
Measures of intraclass clustering are designed based on the neuron- and layer-level representations of the training data.
arXiv Detail & Related papers (2021-03-11T15:26:27Z) - Anomaly Detection on Attributed Networks via Contrastive Self-Supervised
Learning [50.24174211654775]
We present a novel contrastive self-supervised learning framework for anomaly detection on attributed networks.
Our framework fully exploits the local information from network data by sampling a novel type of contrastive instance pair.
A graph neural network-based contrastive learning model is proposed to learn informative embedding from high-dimensional attributes and local structure.
arXiv Detail & Related papers (2021-02-27T03:17:20Z) - Learning from Failure: Training Debiased Classifier from Biased
Classifier [76.52804102765931]
We show that neural networks learn to rely on spurious correlation only when it is "easier" to learn than the desired knowledge.
We propose a failure-based debiasing scheme by training a pair of neural networks simultaneously.
Our method significantly improves the training of the network against various types of biases in both synthetic and real-world datasets.
arXiv Detail & Related papers (2020-07-06T07:20:29Z) - Feature Purification: How Adversarial Training Performs Robust Deep
Learning [66.05472746340142]
We show a principle that we call Feature Purification, where we show one of the causes of the existence of adversarial examples is the accumulation of certain small dense mixtures in the hidden weights during the training process of a neural network.
We present both experiments on the CIFAR-10 dataset to illustrate this principle, and a theoretical result proving that for certain natural classification tasks, training a two-layer neural network with ReLU activation using randomly gradient descent indeed this principle.
arXiv Detail & Related papers (2020-05-20T16:56:08Z) - Kernel and Rich Regimes in Overparametrized Models [69.40899443842443]
We show that gradient descent on overparametrized multilayer networks can induce rich implicit biases that are not RKHS norms.
We also demonstrate this transition empirically for more complex matrix factorization models and multilayer non-linear networks.
arXiv Detail & Related papers (2020-02-20T15:43:02Z) - Implicit Bias of Gradient Descent for Wide Two-layer Neural Networks
Trained with the Logistic Loss [0.0]
Neural networks trained to minimize the logistic (a.k.a. cross-entropy) loss with gradient-based methods are observed to perform well in many supervised classification tasks.
We analyze the training and generalization behavior of infinitely wide two-layer neural networks with homogeneous activations.
arXiv Detail & Related papers (2020-02-11T15:42:09Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.