Parenting: Optimizing Knowledge Selection of Retrieval-Augmented Language Models with Parameter Decoupling and Tailored Tuning
- URL: http://arxiv.org/abs/2410.10360v2
- Date: Sun, 20 Oct 2024 07:53:50 GMT
- Title: Parenting: Optimizing Knowledge Selection of Retrieval-Augmented Language Models with Parameter Decoupling and Tailored Tuning
- Authors: Yongxin Xu, Ruizhe Zhang, Xinke Jiang, Yujie Feng, Yuzhen Xiao, Xinyu Ma, Runchuan Zhu, Xu Chu, Junfeng Zhao, Yasha Wang,
- Abstract summary: Retrieval-Augmented Generation (RAG) offers an effective solution to the issues faced by Large Language Models (LLMs) in hallucination generation and knowledge obsolescence.
We propose Parenting, a novel framework that decouples, identifies, and purposefully optimize parameter subspaces related to adherence and robustness.
- Score: 14.403812623299027
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Retrieval-Augmented Generation (RAG) offers an effective solution to the issues faced by Large Language Models (LLMs) in hallucination generation and knowledge obsolescence by incorporating externally retrieved knowledge. However, existing methods lack effective control mechanisms for integrating internal and external knowledge. Inspired by human cognitive processes, we propose Parenting, a novel framework that decouples, identifies, and purposefully optimizes parameter subspaces related to adherence and robustness. Specifically, Parenting utilizes a key parameter mining method that combines forward and backward propagation signals to localize subspaces representing different capabilities. Then, Parenting employs a type-tailored tuning strategy, applying specific and appropriate optimizations to different subspaces, aiming to achieve a balanced enhancement of both adherence and robustness. Extensive experiments on various datasets and models validate the effectiveness and generalizability of our method.
Related papers
- Learning Neural Strategy-Proof Matching Mechanism from Examples [24.15688619889342]
We develop a novel attention-based neural network called NeuralSD, which can learn a strategy-proof mechanism from a human-crafted dataset.
We conducted experiments to learn a strategy-proof matching from matching examples with different numbers of agents.
arXiv Detail & Related papers (2024-10-25T08:34:25Z) - Causal Representation Learning with Generative Artificial Intelligence: Application to Texts as Treatments [0.0]
We show how to enhance the validity of causal inference with unstructured high-dimensional treatments like texts.
We propose to use a deep generative model such as large language models (LLMs) to efficiently generate treatments.
We show that the knowledge of this true internal representation helps disentangle the treatment features of interest.
arXiv Detail & Related papers (2024-10-01T17:46:21Z) - KnowPO: Knowledge-aware Preference Optimization for Controllable Knowledge Selection in Retrieval-Augmented Language Models [14.057527352653787]
We propose a Knowledge-aware Preference Optimization strategy, dubbed KnowPO, aimed at achieving adaptive knowledge selection.
We show that KnowPO outperforms previous methods for handling knowledge conflicts by over 37%.
arXiv Detail & Related papers (2024-08-06T16:55:54Z) - Seeking Neural Nuggets: Knowledge Transfer in Large Language Models from a Parametric Perspective [106.92016199403042]
We empirically investigate knowledge transfer from larger to smaller models through a parametric perspective.
We employ sensitivity-based techniques to extract and align knowledge-specific parameters between different large language models.
Our findings highlight the critical factors contributing to the process of parametric knowledge transfer.
arXiv Detail & Related papers (2023-10-17T17:58:34Z) - Feature Interaction Aware Automated Data Representation Transformation [27.26916497306978]
We develop a hierarchical reinforcement learning structure with cascading Markov Decision Processes to automate feature and operation selection.
We reward agents based on the interaction strength between selected features, resulting in intelligent and efficient exploration of the feature space that emulates human decision-making.
arXiv Detail & Related papers (2023-09-29T06:48:16Z) - Latent Variable Representation for Reinforcement Learning [131.03944557979725]
It remains unclear theoretically and empirically how latent variable models may facilitate learning, planning, and exploration to improve the sample efficiency of model-based reinforcement learning.
We provide a representation view of the latent variable models for state-action value functions, which allows both tractable variational learning algorithm and effective implementation of the optimism/pessimism principle.
In particular, we propose a computationally efficient planning algorithm with UCB exploration by incorporating kernel embeddings of latent variable models.
arXiv Detail & Related papers (2022-12-17T00:26:31Z) - HyperImpute: Generalized Iterative Imputation with Automatic Model
Selection [77.86861638371926]
We propose a generalized iterative imputation framework for adaptively and automatically configuring column-wise models.
We provide a concrete implementation with out-of-the-box learners, simulators, and interfaces.
arXiv Detail & Related papers (2022-06-15T19:10:35Z) - Revisiting GANs by Best-Response Constraint: Perspective, Methodology,
and Application [49.66088514485446]
Best-Response Constraint (BRC) is a general learning framework to explicitly formulate the potential dependency of the generator on the discriminator.
We show that even with different motivations and formulations, a variety of existing GANs ALL can be uniformly improved by our flexible BRC methodology.
arXiv Detail & Related papers (2022-05-20T12:42:41Z) - Model-Based Deep Learning: On the Intersection of Deep Learning and
Optimization [101.32332941117271]
Decision making algorithms are used in a multitude of different applications.
Deep learning approaches that use highly parametric architectures tuned from data without relying on mathematical models are becoming increasingly popular.
Model-based optimization and data-centric deep learning are often considered to be distinct disciplines.
arXiv Detail & Related papers (2022-05-05T13:40:08Z) - Mixed-Integer Optimization with Constraint Learning [4.462264781248437]
We establish a broad methodological foundation for mixed-integer optimization with learned constraints.
We exploit the mixed-integer optimization-representability of many machine learning methods.
We demonstrate the method in both World Food Programme planning and chemotherapy optimization.
arXiv Detail & Related papers (2021-11-04T20:19:55Z) - Optimization-Inspired Learning with Architecture Augmentations and
Control Mechanisms for Low-Level Vision [74.9260745577362]
This paper proposes a unified optimization-inspired learning framework to aggregate Generative, Discriminative, and Corrective (GDC) principles.
We construct three propagative modules to effectively solve the optimization models with flexible combinations.
Experiments across varied low-level vision tasks validate the efficacy and adaptability of GDC.
arXiv Detail & Related papers (2020-12-10T03:24:53Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.