Causal Representation Learning with Generative Artificial Intelligence: Application to Texts as Treatments
- URL: http://arxiv.org/abs/2410.00903v2
- Date: Fri, 22 Nov 2024 16:31:25 GMT
- Title: Causal Representation Learning with Generative Artificial Intelligence: Application to Texts as Treatments
- Authors: Kosuke Imai, Kentaro Nakamura,
- Abstract summary: We show how to enhance the validity of causal inference with unstructured high-dimensional treatments like texts.
We propose to use a deep generative model such as large language models (LLMs) to efficiently generate treatments.
We show that the knowledge of this true internal representation helps disentangle the treatment features of interest.
- Score: 0.0
- License:
- Abstract: In this paper, we demonstrate how to enhance the validity of causal inference with unstructured high-dimensional treatments like texts, by leveraging the power of generative Artificial Intelligence. Specifically, we propose to use a deep generative model such as large language models (LLMs) to efficiently generate treatments and use their internal representation for subsequent causal effect estimation. We show that the knowledge of this true internal representation helps disentangle the treatment features of interest, such as specific sentiments and certain topics, from other possibly unknown confounding features. Unlike the existing methods, our proposed approach eliminates the need to learn causal representation from the data and hence produces more accurate and efficient estimates. We formally establish the conditions required for the nonparametric identification of the average treatment effect, propose an estimation strategy that avoids the violation of the overlap assumption, and derive the asymptotic properties of the proposed estimator through the application of double machine learning. Finally, using an instrumental variables approach, we extend the proposed methodology to the settings, in which the treatment feature is based on human perception rather than is assumed to be fixed given the treatment object. The proposed methodology is also applicable to text reuse where an LLM is used to regenerate the existing texts. We conduct simulation and empirical studies, using the generated text data from an open-source LLM, Llama 3, to illustrate the advantages of our estimator over the state-of-the-art causal representation learning algorithms.
Related papers
- Likelihood as a Performance Gauge for Retrieval-Augmented Generation [78.28197013467157]
We show that likelihoods serve as an effective gauge for language model performance.
We propose two methods that use question likelihood as a gauge for selecting and constructing prompts that lead to better performance.
arXiv Detail & Related papers (2024-11-12T13:14:09Z) - Interpretable Medical Diagnostics with Structured Data Extraction by
Large Language Models [59.89454513692417]
Tabular data is often hidden in text, particularly in medical diagnostic reports.
We propose a novel, simple, and effective methodology for extracting structured tabular data from textual medical reports, called TEMED-LLM.
We demonstrate that our approach significantly outperforms state-of-the-art text classification models in medical diagnostics.
arXiv Detail & Related papers (2023-06-08T09:12:28Z) - Neuroevolutionary Feature Representations for Causal Inference [0.0]
We propose a novel approach for learning feature representations to aid the estimation of the conditional average treatment effect or CATE.
Our method focuses on an intermediate layer in a neural network trained to predict the outcome from the features.
arXiv Detail & Related papers (2022-05-21T09:13:04Z) - Information-Theoretic Odometry Learning [83.36195426897768]
We propose a unified information theoretic framework for learning-motivated methods aimed at odometry estimation.
The proposed framework provides an elegant tool for performance evaluation and understanding in information-theoretic language.
arXiv Detail & Related papers (2022-03-11T02:37:35Z) - DEALIO: Data-Efficient Adversarial Learning for Imitation from
Observation [57.358212277226315]
In imitation learning from observation IfO, a learning agent seeks to imitate a demonstrating agent using only observations of the demonstrated behavior without access to the control signals generated by the demonstrator.
Recent methods based on adversarial imitation learning have led to state-of-the-art performance on IfO problems, but they typically suffer from high sample complexity due to a reliance on data-inefficient, model-free reinforcement learning algorithms.
This issue makes them impractical to deploy in real-world settings, where gathering samples can incur high costs in terms of time, energy, and risk.
We propose a more data-efficient IfO algorithm
arXiv Detail & Related papers (2021-03-31T23:46:32Z) - Generative Counterfactuals for Neural Networks via Attribute-Informed
Perturbation [51.29486247405601]
We design a framework to generate counterfactuals for raw data instances with the proposed Attribute-Informed Perturbation (AIP)
By utilizing generative models conditioned with different attributes, counterfactuals with desired labels can be obtained effectively and efficiently.
Experimental results on real-world texts and images demonstrate the effectiveness, sample quality as well as efficiency of our designed framework.
arXiv Detail & Related papers (2021-01-18T08:37:13Z) - PermuteAttack: Counterfactual Explanation of Machine Learning Credit
Scorecards [0.0]
This paper is a note on new directions and methodologies for validation and explanation of Machine Learning (ML) models employed for retail credit scoring in finance.
Our proposed framework draws motivation from the field of Artificial Intelligence (AI) security and adversarial ML.
arXiv Detail & Related papers (2020-08-24T00:05:13Z) - Robust Q-learning [0.0]
We propose a robust Q-learning approach which allows estimating nuisance parameters using data-adaptive techniques.
We study the behavior of our estimators and provide simulation studies that highlight the need for and usefulness of the proposed method.
arXiv Detail & Related papers (2020-03-27T14:10:38Z) - A logic-based relational learning approach to relation extraction: The
OntoILPER system [0.9176056742068812]
We present OntoILPER, a logic-based relational learning approach to Relation Extraction.
OntoILPER takes profit of a rich relational representation of examples, which can alleviate the drawbacks.
The proposed relational approach seems to be more suitable for Relation Extraction than statistical ones.
arXiv Detail & Related papers (2020-01-13T12:47:49Z) - Localized Debiased Machine Learning: Efficient Inference on Quantile
Treatment Effects and Beyond [69.83813153444115]
We consider an efficient estimating equation for the (local) quantile treatment effect ((L)QTE) in causal inference.
Debiased machine learning (DML) is a data-splitting approach to estimating high-dimensional nuisances.
We propose localized debiased machine learning (LDML), which avoids this burdensome step.
arXiv Detail & Related papers (2019-12-30T14:42:52Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.