論文の概要: Optimizing Instruction Synthesis: Effective Exploration of Evolutionary Space with Tree Search
- arxiv url: http://arxiv.org/abs/2410.10392v1
- Date: Mon, 14 Oct 2024 11:28:30 GMT
- ステータス: 処理完了
- システム内更新日: 2024-10-29 21:54:49.460843
- Title: Optimizing Instruction Synthesis: Effective Exploration of Evolutionary Space with Tree Search
- Title(参考訳): 指導合成の最適化:木探索による進化空間の効率的な探索
- Authors: Chenglin Li, Qianglong Chen, Zhi Li, Feng Tao, Yicheng Li, Hao Chen, Fei Yu, Yin Zhang,
- Abstract要約: 命令を効率的に合成するスケーラブルなフレームワークであるIDEA-MCTS (Instruction Data Enhancement using Monte Carlo Tree Search)を紹介した。
木探索と評価モデルにより、各命令を効率よくガイドして高品質な形式に進化させ、命令の微調整を支援することができる。
実験の結果、IDEA-MCTSはシードインストラクションデータを大幅に向上させ、品質、多様性、複雑さの平均評価スコアを2.19から3.81に引き上げた。
- 参考スコア(独自算出の注目度): 25.108044778194536
- License: http://creativecommons.org/licenses/by-sa/4.0/
- Abstract: Instruction tuning is a crucial technique for aligning language models with humans' actual goals in the real world. Extensive research has highlighted the quality of instruction data is essential for the success of this alignment. However, creating high-quality data manually is labor-intensive and time-consuming, which leads researchers to explore using LLMs to synthesize data. Recent studies have focused on using a stronger LLM to iteratively enhance existing instruction data, showing promising results. Nevertheless, previous work often lacks control over the evolution direction, resulting in high uncertainty in the data synthesis process and low-quality instructions. In this paper, we introduce a general and scalable framework, IDEA-MCTS (Instruction Data Enhancement using Monte Carlo Tree Search), a scalable framework for efficiently synthesizing instructions. With tree search and evaluation models, it can efficiently guide each instruction to evolve into a high-quality form, aiding in instruction fine-tuning. Experimental results show that IDEA-MCTS significantly enhances the seed instruction data, raising the average evaluation scores of quality, diversity, and complexity from 2.19 to 3.81. Furthermore, in open-domain benchmarks, experimental results show that IDEA-MCTS improves the accuracy of real-world instruction-following skills in LLMs by an average of 5\% in low-resource settings.
- Abstract(参考訳): インストラクションチューニングは,実世界における言語モデルと人間の実際の目標を整合させる重要な手法である。
大規模な研究は、このアライメントの成功には、命令データの質が不可欠であることを強調している。
しかし、高品質なデータを手動で作成するのは労働集約的で時間を要するため、研究者はLLMを使ってデータを合成する方法を探ることになる。
近年の研究では、より強力なLCMを使用して既存の命令データを反復的に強化し、有望な結果を示すことに焦点が当てられている。
それにもかかわらず、以前の研究は進化方向の制御を欠くことが多く、結果としてデータ合成プロセスや低品質な命令に高い不確実性をもたらす。
本稿では,命令を効率的に合成するスケーラブルなフレームワークであるIDEA-MCTS (Instruction Data Enhancement using Monte Carlo Tree Search)を紹介する。
木探索と評価モデルにより、各命令を効率よくガイドして高品質な形式に進化させ、命令の微調整を支援することができる。
実験の結果、IDEA-MCTSはシードインストラクションデータを大幅に向上させ、品質、多様性、複雑さの平均評価スコアを2.19から3.81に引き上げた。
さらに、オープンドメインベンチマークでは、IDEA-MCTSは低リソース環境でのLLMにおける実世界の命令追従スキルの精度を平均5倍改善することを示した。
関連論文リスト
- Star-Agents: Automatic Data Optimization with LLM Agents for Instruction Tuning [71.2981957820888]
本稿では,データセット間のデータ品質向上を自動化する新しいStar-Agentsフレームワークを提案する。
このフレームワークは最初,複数のLDMエージェントを用いた多様なインストラクションデータを生成する。
生成したデータは、難易度と品質の両方を評価する二重モデル法を用いて厳密な評価を行う。
論文 参考訳(メタデータ) (2024-11-21T02:30:53Z) - IterSelectTune: An Iterative Training Framework for Efficient Instruction-Tuning Data Selection [28.581257601441045]
高品質な命令データを選択するための効率的で費用対効果の高い反復的トレーニングポリシーである$textbfIterSelectTune$を紹介した。
ソースデータの約20%を微調整することで、本手法は、全データセット上で調整されたモデルよりも一貫して優れる。
論文 参考訳(メタデータ) (2024-10-17T11:48:57Z) - Efficacy of Synthetic Data as a Benchmark [3.2968976262860408]
大規模言語モデル(LLM)による合成データ生成の有効性について検討する。
実験の結果, 単純なタスクに対して, 合成データは様々な手法の性能を効果的に捉えることができるが, 名前付きエンティティ認識のような複雑なタスクでは不十分であることがわかった。
我々は、ベンチマークデータの生成とタスクの実行の両方に同じLLMを使用した場合のバイアスを評価するバイアス係数と呼ばれる新しい指標を提案する。
論文 参考訳(メタデータ) (2024-09-18T13:20:23Z) - Enhancing and Assessing Instruction-Following with Fine-Grained Instruction Variants [28.691691883519542]
複雑な命令を単純なサブコンポーネントに分解し、それらを修正し、それらを新しい変種に再構成する手法を導入する。
DeMoReconに基づくFGIVデータセットは,1,773個のシード命令の微粒化を含む。
以上の結果から,FGIVを微調整したLDMは,命令追従ベンチマークと一般的な命令追従ベンチマークの両方において,大幅な性能向上が期待できることがわかった。
論文 参考訳(メタデータ) (2024-06-17T08:08:11Z) - AvaTaR: Optimizing LLM Agents for Tool Usage via Contrastive Reasoning [93.96463520716759]
大規模言語モデル(LLM)エージェントは、精度と幻覚を高めるために外部ツールと知識を活用する際、印象的な能力を示した。
本稿では、LLMエージェントを最適化して提供されたツールを効果的に活用し、与えられたタスクのパフォーマンスを向上させる新しい自動化フレームワークであるAvaTaRを紹介する。
論文 参考訳(メタデータ) (2024-06-17T04:20:02Z) - Monte Carlo Tree Search Boosts Reasoning via Iterative Preference Learning [55.96599486604344]
本稿では,Large Language Models (LLMs) の推論能力向上を目的とした,反復的な選好学習プロセスによるアプローチを提案する。
我々は、MCTS(Monte Carlo Tree Search)を用いて好みデータを反復的に収集し、そのルックアヘッド機能を利用して、インスタンスレベルの報酬をよりきめ細かいステップレベルの信号に分解する。
提案アルゴリズムはDPO(Direct Preference Optimization)を用いて,新たに生成されたステップレベルの優先度データを用いてLCMポリシーを更新する。
論文 参考訳(メタデータ) (2024-05-01T11:10:24Z) - EPIC: Effective Prompting for Imbalanced-Class Data Synthesis in Tabular Data Classification via Large Language Models [39.347666307218006]
大規模言語モデル (LLM) は、多様なアプリケーションにまたがるテキスト内学習能力を示す。
バランスの取れたデータサンプルと一貫したフォーマットと独自の変数マッピングを併用した新しい手法であるEPICを導入し、不均衡なデータセットであっても、全てのクラスで正確な合成データを生成するのにLLMをガイドする。
論文 参考訳(メタデータ) (2024-04-15T17:49:16Z) - What Makes for Good Visual Instructions? Synthesizing Complex Visual
Reasoning Instructions for Visual Instruction Tuning [115.19451843294154]
マルチモーダル大言語モデル(MLLM)のゼロショット一般化能力向上のためのビジュアルインストラクションチューニング
本稿では,高品質な視覚的推論命令を自動生成するための体系的アプローチを提案する。
我々のデータセットは、MME-CognitionにおけるMiniGPT-4とBLIP-2の性能をそれぞれ32.6%、28.8%向上させるなど、比較したMLLMの性能を一貫して向上させる。
論文 参考訳(メタデータ) (2023-11-02T15:36:12Z) - Dynamics of Instruction Tuning: Each Ability of Large Language Models
Has Its Own Growth Pace [21.015261553612643]
10の能力にまたがる40k以上のデータセットを提示し、7bから33bのパラメータを持つ命令調整モデルについて検討する。
i) モデル全体の性能がデータとパラメータスケールに結びついているにもかかわらず、個々の能力はこれらの要因に対して異なる感性を持っている。
人為的なデータはGPT-4の合成データより効率が良く、容積の増加とともにモデル性能を常に向上させることができる。
論文 参考訳(メタデータ) (2023-10-30T15:37:10Z) - From Quantity to Quality: Boosting LLM Performance with Self-Guided Data Selection for Instruction Tuning [52.257422715393574]
本稿では,Large Language Models (LLMs) の自己誘導手法を導入し,オープンソースデータセットからサクラサンプルを自動識別し,選択する。
我々の重要な革新である命令追従困難度(IFD)メトリックは、モデルが期待する応答と本質的な生成能力の相違を識別するための重要な指標として現れます。
論文 参考訳(メタデータ) (2023-08-23T09:45:29Z) - DAGA: Data Augmentation with a Generation Approach for Low-resource
Tagging Tasks [88.62288327934499]
線形化ラベル付き文に基づいて訓練された言語モデルを用いた新しい拡張手法を提案する。
本手法は, 教師付き設定と半教師付き設定の両方に適用可能である。
論文 参考訳(メタデータ) (2020-11-03T07:49:15Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。