Medico: Towards Hallucination Detection and Correction with Multi-source Evidence Fusion
- URL: http://arxiv.org/abs/2410.10408v1
- Date: Mon, 14 Oct 2024 12:00:58 GMT
- Title: Medico: Towards Hallucination Detection and Correction with Multi-source Evidence Fusion
- Authors: Xinping Zhao, Jindi Yu, Zhenyu Liu, Jifang Wang, Dongfang Li, Yibin Chen, Baotian Hu, Min Zhang,
- Abstract summary: hallucinations prevail in Large Language Models (LLMs), where the generated content is coherent but factually incorrect.
We present Medico, a Multi-source evidence fusion enhanced hallucination detection and correction framework.
It fuses diverse evidence from multiple sources, detects whether the generated content contains factual errors, provides the rationale behind the judgment, and iteratively revises the hallucinated content.
- Score: 21.565157677548854
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: As we all know, hallucinations prevail in Large Language Models (LLMs), where the generated content is coherent but factually incorrect, which inflicts a heavy blow on the widespread application of LLMs. Previous studies have shown that LLMs could confidently state non-existent facts rather than answering ``I don't know''. Therefore, it is necessary to resort to external knowledge to detect and correct the hallucinated content. Since manual detection and correction of factual errors is labor-intensive, developing an automatic end-to-end hallucination-checking approach is indeed a needful thing. To this end, we present Medico, a Multi-source evidence fusion enhanced hallucination detection and correction framework. It fuses diverse evidence from multiple sources, detects whether the generated content contains factual errors, provides the rationale behind the judgment, and iteratively revises the hallucinated content. Experimental results on evidence retrieval (0.964 HR@5, 0.908 MRR@5), hallucination detection (0.927-0.951 F1), and hallucination correction (0.973-0.979 approval rate) manifest the great potential of Medico. A video demo of Medico can be found at https://youtu.be/RtsO6CSesBI.
Related papers
- MedHallu: A Comprehensive Benchmark for Detecting Medical Hallucinations in Large Language Models [82.30696225661615]
We introduce MedHallu, the first benchmark specifically designed for medical hallucination detection.
We show that state-of-the-art LLMs, including GPT-4o, Llama-3.1, and medically fine-tuned UltraMedical, struggle with this binary hallucination detection task.
Using bidirectional entailment clustering, we show that harder-to-detect hallucinations are semantically closer to ground truth.
arXiv Detail & Related papers (2025-02-20T06:33:23Z) - Trust Me, I'm Wrong: High-Certainty Hallucinations in LLMs [45.13670875211498]
Large Language Models (LLMs) often generate outputs that lack grounding in real-world facts, a phenomenon known as hallucinations.
We show that models can hallucinate with high certainty even when they have the correct knowledge.
arXiv Detail & Related papers (2025-02-18T15:46:31Z) - The HalluRAG Dataset: Detecting Closed-Domain Hallucinations in RAG Applications Using an LLM's Internal States [0.5573267589690007]
We focus on hallucinations involving information not used in training, which we determine by using recency to ensure the information emerged after a cut-off date.
This study investigates these hallucinations by detecting them at sentence level using different internal states of various language models.
Our results show that IAVs detect hallucinations as effectively as CEVs and reveal that answerable and unanswerable prompts are encoded differently as separate classifiers.
arXiv Detail & Related papers (2024-12-22T15:08:24Z) - MedHalu: Hallucinations in Responses to Healthcare Queries by Large Language Models [26.464489158584463]
We conduct a pioneering study of hallucinations in LLM-generated responses to real-world healthcare queries from patients.
We propose MedHalu, a carefully crafted first-of-its-kind medical hallucination dataset with a diverse range of health-related topics.
We also introduce MedHaluDetect framework to evaluate capabilities of various LLMs in detecting hallucinations.
arXiv Detail & Related papers (2024-09-29T00:09:01Z) - Hallucination Detection: Robustly Discerning Reliable Answers in Large Language Models [70.19081534515371]
Large Language Models (LLMs) have gained widespread adoption in various natural language processing tasks.
They generate unfaithful or inconsistent content that deviates from the input source, leading to severe consequences.
We propose a robust discriminator named RelD to effectively detect hallucination in LLMs' generated answers.
arXiv Detail & Related papers (2024-07-04T18:47:42Z) - On Large Language Models' Hallucination with Regard to Known Facts [74.96789694959894]
Large language models are successful in answering factoid questions but are also prone to hallucination.
We investigate the phenomenon of LLMs possessing correct answer knowledge yet still hallucinating from the perspective of inference dynamics.
Our study shed light on understanding the reasons for LLMs' hallucinations on their known facts, and more importantly, on accurately predicting when they are hallucinating.
arXiv Detail & Related papers (2024-03-29T06:48:30Z) - Fine-grained Hallucination Detection and Editing for Language Models [109.56911670376932]
Large language models (LMs) are prone to generate factual errors, which are often called hallucinations.
We introduce a comprehensive taxonomy of hallucinations and argue that hallucinations manifest in diverse forms.
We propose a novel task of automatic fine-grained hallucination detection and construct a new evaluation benchmark, FavaBench.
arXiv Detail & Related papers (2024-01-12T19:02:48Z) - The Dawn After the Dark: An Empirical Study on Factuality Hallucination
in Large Language Models [134.6697160940223]
hallucination poses great challenge to trustworthy and reliable deployment of large language models.
Three key questions should be well studied: how to detect hallucinations (detection), why do LLMs hallucinate (source), and what can be done to mitigate them.
This work presents a systematic empirical study on LLM hallucination, focused on the the three aspects of hallucination detection, source and mitigation.
arXiv Detail & Related papers (2024-01-06T12:40:45Z) - HalluciDoctor: Mitigating Hallucinatory Toxicity in Visual Instruction Data [102.56792377624927]
hallucinations inherent in machine-generated data remain under-explored.
We present a novel hallucination detection and elimination framework, HalluciDoctor, based on the cross-checking paradigm.
Our method successfully mitigates 44.6% hallucinations relatively and maintains competitive performance compared to LLaVA.
arXiv Detail & Related papers (2023-11-22T04:52:58Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.