MedHallu: A Comprehensive Benchmark for Detecting Medical Hallucinations in Large Language Models
- URL: http://arxiv.org/abs/2502.14302v1
- Date: Thu, 20 Feb 2025 06:33:23 GMT
- Title: MedHallu: A Comprehensive Benchmark for Detecting Medical Hallucinations in Large Language Models
- Authors: Shrey Pandit, Jiawei Xu, Junyuan Hong, Zhangyang Wang, Tianlong Chen, Kaidi Xu, Ying Ding,
- Abstract summary: We introduce MedHallu, the first benchmark specifically designed for medical hallucination detection.
We show that state-of-the-art LLMs, including GPT-4o, Llama-3.1, and medically fine-tuned UltraMedical, struggle with this binary hallucination detection task.
Using bidirectional entailment clustering, we show that harder-to-detect hallucinations are semantically closer to ground truth.
- Score: 82.30696225661615
- License:
- Abstract: Advancements in Large Language Models (LLMs) and their increasing use in medical question-answering necessitate rigorous evaluation of their reliability. A critical challenge lies in hallucination, where models generate plausible yet factually incorrect outputs. In the medical domain, this poses serious risks to patient safety and clinical decision-making. To address this, we introduce MedHallu, the first benchmark specifically designed for medical hallucination detection. MedHallu comprises 10,000 high-quality question-answer pairs derived from PubMedQA, with hallucinated answers systematically generated through a controlled pipeline. Our experiments show that state-of-the-art LLMs, including GPT-4o, Llama-3.1, and the medically fine-tuned UltraMedical, struggle with this binary hallucination detection task, with the best model achieving an F1 score as low as 0.625 for detecting "hard" category hallucinations. Using bidirectional entailment clustering, we show that harder-to-detect hallucinations are semantically closer to ground truth. Through experiments, we also show incorporating domain-specific knowledge and introducing a "not sure" category as one of the answer categories improves the precision and F1 scores by up to 38% relative to baselines.
Related papers
- Medico: Towards Hallucination Detection and Correction with Multi-source Evidence Fusion [21.565157677548854]
hallucinations prevail in Large Language Models (LLMs), where the generated content is coherent but factually incorrect.
We present Medico, a Multi-source evidence fusion enhanced hallucination detection and correction framework.
It fuses diverse evidence from multiple sources, detects whether the generated content contains factual errors, provides the rationale behind the judgment, and iteratively revises the hallucinated content.
arXiv Detail & Related papers (2024-10-14T12:00:58Z) - MedHalu: Hallucinations in Responses to Healthcare Queries by Large Language Models [26.464489158584463]
We conduct a pioneering study of hallucinations in LLM-generated responses to real-world healthcare queries from patients.
We propose MedHalu, a carefully crafted first-of-its-kind medical hallucination dataset with a diverse range of health-related topics.
We also introduce MedHaluDetect framework to evaluate capabilities of various LLMs in detecting hallucinations.
arXiv Detail & Related papers (2024-09-29T00:09:01Z) - Hallu-PI: Evaluating Hallucination in Multi-modal Large Language Models within Perturbed Inputs [54.50483041708911]
Hallu-PI is the first benchmark designed to evaluate hallucination in MLLMs within Perturbed Inputs.
Hallu-PI consists of seven perturbed scenarios, containing 1,260 perturbed images from 11 object types.
Our research reveals a severe bias in MLLMs' ability to handle different types of hallucinations.
arXiv Detail & Related papers (2024-08-02T16:07:15Z) - Detecting and Evaluating Medical Hallucinations in Large Vision Language Models [22.30139330566514]
Large Vision Language Models (LVLMs) are increasingly integral to healthcare applications.
LVLMs inherit susceptibility to hallucinations-a significant concern in high-stakes medical contexts.
We introduce Med-HallMark, the first benchmark specifically designed for hallucination detection and evaluation.
We also present MediHallDetector, a novel Medical LVLM engineered for precise hallucination detection.
arXiv Detail & Related papers (2024-06-14T17:14:22Z) - HalluDial: A Large-Scale Benchmark for Automatic Dialogue-Level Hallucination Evaluation [19.318217051269382]
Large Language Models (LLMs) have significantly advanced the field of Natural Language Processing (NLP)
HalluDial is the first comprehensive large-scale benchmark for automatic dialogue-level hallucination evaluation.
The benchmark includes 4,094 dialogues with a total of 146,856 samples.
arXiv Detail & Related papers (2024-06-11T08:56:18Z) - ANAH: Analytical Annotation of Hallucinations in Large Language Models [65.12177400764506]
We present $textbfANAH$, a dataset that offers $textbfAN$alytical $textbfA$nnotation of hallucinations in Large Language Models.
ANAH consists of 12k sentence-level annotations for 4.3k LLM responses covering over 700 topics, constructed by a human-in-the-loop pipeline.
Thanks to the fine granularity of the hallucination annotations, we can quantitatively confirm that the hallucinations of LLMs accumulate in the answer and use ANAH to train and evaluate hallucination annotators.
arXiv Detail & Related papers (2024-05-30T17:54:40Z) - Fine-grained Hallucination Detection and Editing for Language Models [109.56911670376932]
Large language models (LMs) are prone to generate factual errors, which are often called hallucinations.
We introduce a comprehensive taxonomy of hallucinations and argue that hallucinations manifest in diverse forms.
We propose a novel task of automatic fine-grained hallucination detection and construct a new evaluation benchmark, FavaBench.
arXiv Detail & Related papers (2024-01-12T19:02:48Z) - Alleviating Hallucinations of Large Language Models through Induced
Hallucinations [67.35512483340837]
Large language models (LLMs) have been observed to generate responses that include inaccurate or fabricated information.
We propose a simple textitInduce-then-Contrast Decoding (ICD) strategy to alleviate hallucinations.
arXiv Detail & Related papers (2023-12-25T12:32:49Z) - Evaluating Hallucinations in Chinese Large Language Models [65.4771562909392]
We establish a benchmark named HalluQA (Chinese Hallucination Question-Answering) to measure the hallucination phenomenon in Chinese large language models.
We consider two types of hallucinations: imitative falsehoods and factual errors, and we construct adversarial samples based on GLM-130B and ChatGPT.
For evaluation, we design an automated evaluation method using GPT-4 to judge whether a model output is hallucinated.
arXiv Detail & Related papers (2023-10-05T07:57:09Z) - Med-HALT: Medical Domain Hallucination Test for Large Language Models [0.0]
This research paper focuses on the challenges posed by hallucinations in large language models (LLMs)
We propose a new benchmark and dataset, Med-HALT (Medical Domain Hallucination Test), designed specifically to evaluate and reduce hallucinations.
arXiv Detail & Related papers (2023-07-28T06:43:04Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.