論文の概要: Diversity-Aware Reinforcement Learning for de novo Drug Design
- arxiv url: http://arxiv.org/abs/2410.10431v1
- Date: Mon, 14 Oct 2024 12:25:23 GMT
- ステータス: 処理完了
- システム内更新日: 2024-10-29 21:44:49.421393
- Title: Diversity-Aware Reinforcement Learning for de novo Drug Design
- Title(参考訳): デノボ医薬品設計のための多様性を考慮した強化学習
- Authors: Hampus Gummesson Svensson, Christian Tyrchan, Ola Engkvist, Morteza Haghir Chehreghani,
- Abstract要約: 事前訓練された生成モデルの微調整は、有望な薬物分子の生成に優れた性能を示した。
報酬関数の適応的更新機構が生成分子の多様性にどのように影響するかは研究されていない。
我々の実験は、構造と予測に基づく手法を組み合わせることで、一般的に分子多様性の点でより良い結果が得られることを示した。
- 参考スコア(独自算出の注目度): 2.356290293311623
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Fine-tuning a pre-trained generative model has demonstrated good performance in generating promising drug molecules. The fine-tuning task is often formulated as a reinforcement learning problem, where previous methods efficiently learn to optimize a reward function to generate potential drug molecules. Nevertheless, in the absence of an adaptive update mechanism for the reward function, the optimization process can become stuck in local optima. The efficacy of the optimal molecule in a local optimization may not translate to usefulness in the subsequent drug optimization process or as a potential standalone clinical candidate. Therefore, it is important to generate a diverse set of promising molecules. Prior work has modified the reward function by penalizing structurally similar molecules, primarily focusing on finding molecules with higher rewards. To date, no study has comprehensively examined how different adaptive update mechanisms for the reward function influence the diversity of generated molecules. In this work, we investigate a wide range of intrinsic motivation methods and strategies to penalize the extrinsic reward, and how they affect the diversity of the set of generated molecules. Our experiments reveal that combining structure- and prediction-based methods generally yields better results in terms of molecular diversity.
- Abstract(参考訳): 事前訓練された生成モデルの微調整は、有望な薬物分子の生成に優れた性能を示した。
微調整タスクは、しばしば強化学習問題として定式化され、従来の手法では報酬関数を効率的に学習し、潜在的な薬物分子を生成する。
それでも、報酬関数に対する適応的な更新機構がない場合、最適化プロセスは局所的な最適化で停止する可能性がある。
局所最適化における最適分子の有効性は、その後の薬物最適化プロセスにおける有用性や、潜在的に独立した臨床候補として有用性には変換されない。
したがって、様々な有望な分子の集合を生成することが重要である。
以前の研究は、構造的に類似した分子をペナル化することで報酬関数を修正し、主により高い報酬を持つ分子を見つけることに焦点を当てた。
これまで、報酬関数の適応的更新機構が生成分子の多様性にどのように影響するかを包括的に研究する研究は行われていない。
本研究では,外因性報酬をペナルティ化する多様な本質的動機づけ手法と戦略について検討し,生成分子群の多様性にどう影響するかを考察する。
我々の実験は、構造と予測に基づく手法を組み合わせることで、一般的に分子多様性の点でより良い結果が得られることを示した。
関連論文リスト
- Fragment-Masked Molecular Optimization [37.20936761888007]
表現型薬物発見(PDD)に基づくフラグメントマインド分子最適化法を提案する。
PDDに基づく分子最適化は、表現型活性を最適化しながら潜在的な安全性リスクを低減し、臨床成功の可能性を高める。
総合的な実験により、シリカ内最適化の成功率は94.4%に達し、平均効率は5.3%上昇した。
論文 参考訳(メタデータ) (2024-08-17T06:00:58Z) - Aligning Target-Aware Molecule Diffusion Models with Exact Energy Optimization [147.7899503829411]
AliDiffは、事前訓練されたターゲット拡散モデルと望ましい機能特性を整合させる新しいフレームワークである。
最先端の結合エネルギーを持つ分子を最大7.07 Avg. Vina Scoreで生成することができる。
論文 参考訳(メタデータ) (2024-07-01T06:10:29Z) - Multi-objective Molecular Optimization for Opioid Use Disorder Treatment
Using Generative Network Complex [5.33208055504216]
オピオイド・ユース障害(OUD)が世界的な健康問題として浮上している。
本研究では,微分方程式(SDE)に基づく拡散モデルと事前学習された自己エンコーダモデルの潜在空間を結合した深部生成モデルを提案する。
分子発生器は、複数の標的に有効である分子の効率的な生成を可能にする。
論文 参考訳(メタデータ) (2023-06-13T01:12:31Z) - Molecule optimization via multi-objective evolutionary in implicit
chemical space [8.72872397589296]
MOMOは、化学知識の学習と多目的進化探索を組み合わせた多目的分子最適化フレームワークである。
4つの多目的特性と類似性最適化タスクにおけるMOMOの性能を実証し、ケーススタディを通してMOMOの探索能力を示す。
論文 参考訳(メタデータ) (2022-12-17T09:09:23Z) - Exploring Chemical Space with Score-based Out-of-distribution Generation [57.15855198512551]
生成微分方程式(SDE)にアウト・オブ・ディストリビューション制御を組み込んだスコアベース拡散方式を提案する。
いくつかの新しい分子は現実世界の薬物の基本的な要件を満たしていないため、MOODは特性予測器からの勾配を利用して条件付き生成を行う。
我々はMOODがトレーニング分布を超えて化学空間を探索できることを実験的に検証し、既存の方法で見いだされた分子、そして元のトレーニングプールの上位0.01%までも生成できることを実証した。
論文 参考訳(メタデータ) (2022-06-06T06:17:11Z) - Molecular Attributes Transfer from Non-Parallel Data [57.010952598634944]
分子最適化をスタイル伝達問題として定式化し、非並列データの2つのグループ間の内部差を自動的に学習できる新しい生成モデルを提案する。
毒性修飾と合成性向上という2つの分子最適化タスクの実験により,本モデルがいくつかの最先端手法を著しく上回ることを示した。
論文 参考訳(メタデータ) (2021-11-30T06:10:22Z) - Differentiable Scaffolding Tree for Molecular Optimization [47.447362691543304]
本稿では,離散的な化学構造を局所的な微分可能木に変換するための知識ネットワークを用いた微分可能な足場木(DST)を提案する。
実験により, 勾配に基づく分子最適化は有効であり, 試料効率が高いことが示された。
論文 参考訳(メタデータ) (2021-09-22T01:16:22Z) - Realistic molecule optimization on a learned graph manifold [4.640835690336652]
学習されたリアリズムサンプリングは、経験的により現実的な分子を生成し、類似性制約を伴う分子最適化のタスクにおいて、最近のすべてのベースラインを上回ります。
本研究では,自動回帰モデルを用いてデータセットの分布を学習し,スコア最適化をメトロポリスアルゴリズムを用いて行うハイブリッド手法を提案する。
論文 参考訳(メタデータ) (2021-06-03T07:39:35Z) - Optimizing Molecules using Efficient Queries from Property Evaluations [66.66290256377376]
汎用的なクエリベースの分子最適化フレームワークであるQMOを提案する。
QMOは効率的なクエリに基づいて入力分子の所望の特性を改善する。
QMOは, 有機分子を最適化するベンチマークタスクにおいて, 既存の手法よりも優れていることを示す。
論文 参考訳(メタデータ) (2020-11-03T18:51:18Z) - MIMOSA: Multi-constraint Molecule Sampling for Molecule Optimization [51.00815310242277]
生成モデルと強化学習アプローチは、最初の成功をおさめたが、複数の薬物特性を同時に最適化する上で、依然として困難に直面している。
本稿では,MultI-Constraint MOlecule SAmpling (MIMOSA)アプローチ,初期推定として入力分子を用いるサンプリングフレームワーク,ターゲット分布からのサンプル分子を提案する。
論文 参考訳(メタデータ) (2020-10-05T20:18:42Z) - Molecular Design in Synthetically Accessible Chemical Space via Deep
Reinforcement Learning [0.0]
既存の生成法は、最適化中に分子特性の分布を好適にシフトできる能力に制限されていると論じる。
本稿では,分子設計のための新しい強化学習フレームワークを提案する。
論文 参考訳(メタデータ) (2020-04-29T16:29:28Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。