Individual solid-state nuclear spin qubits with coherence exceeding seconds
- URL: http://arxiv.org/abs/2410.10432v1
- Date: Mon, 14 Oct 2024 12:25:39 GMT
- Title: Individual solid-state nuclear spin qubits with coherence exceeding seconds
- Authors: James O'Sullivan, Jaime Travesedo, Louis Pallegoix, Zhiyuan W. Huang, Alexande May, Boris Yavkin, Patrick Hogan, Sen Lin, Renbao Liu, Thierry Chaneliere, Sylvain Bertaina, Philippe Goldner, Daniel Esteve, Denis Vion, Patrick Abgrall, Patrice Bertet, Emmanuel Flurin,
- Abstract summary: We present a new platform for quantum information processing consisting of $183$W nuclear spin qubits adjacent to an Er$3+$ crystal.
We demonstrate quantum non-demolition readout of each nuclear spin qubit using the Er$3+$ spin as an ancilla.
We introduce a new scheme for all-microwave single- and two-qubit gates, based on stimulated Raman driving of the coupled electron-nuclear spin system.
- Score: 32.074397322439324
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: The ability to coherently control and read out qubits with long coherence times in a scalable system is a crucial requirement for any quantum processor. Nuclear spins in the solid state have shown great promise as long-lived qubits. Control and readout of individual nuclear spin qubit registers has made major progress in the recent years using individual electron spin ancilla addressed either electrically or optically. Here, we present a new platform for quantum information processing, consisting of $^{183}$W nuclear spin qubits adjacent to an Er$^{3+}$ impurity in a CaWO$_4$ crystal, interfaced via a superconducting resonator and detected using a microwave photon counter at 10mK. We study two nuclear spin qubits with $T_2^*$ of $0.8(2)~$s and $1.2(3)~$s, $T_2$ of $3.4(4)~$s and $4.4(6)~$ s, respectively. We demonstrate single-shot quantum non-demolition readout of each nuclear spin qubit using the Er$^{3+}$ spin as an ancilla. We introduce a new scheme for all-microwave single- and two-qubit gates, based on stimulated Raman driving of the coupled electron-nuclear spin system. We realize single- and two-qubit gates on a timescale of a few milliseconds, and prepare a decoherence-protected Bell state with 88% fidelity and $T_2^*$ of $1.7(2)~$s. Our results are a proof-of-principle demonstrating the potential of solid-state nuclear spin qubits as a promising platform for quantum information processing. With the potential to scale to tens or hundreds of qubits, this platform has prospects for the development of scalable quantum processors with long-lived qubits.
Related papers
- Control of solid-state nuclear spin qubits using an electron spin-1/2 [0.0]
We show improved control of single nuclear spins by an electron spin-1/2 using Dynamically Decoupled Radio Frequency gates.
Our work provides key insights into the challenges and opportunities for nuclear spin control in electron spin-1/2 systems.
arXiv Detail & Related papers (2024-09-13T16:51:16Z) - High-Fidelity Entangling Gates for Electron and Nuclear Spin Qubits in Diamond [0.0]
We propose schemes for fast and high-fidelity entangling gates on a nitrogen-vacancy center in diamond.
We predict a complete suppression of off-resonant driving errors for two-qubit gates when addressing the NV electron spin conditioned on states of nuclear spins of the nitrogen atom of the defect.
arXiv Detail & Related papers (2024-03-18T08:07:55Z) - A Quantum Repeater Platform based on Single SiV$^-$ Centers in Diamond
with Cavity-Assisted, All-Optical Spin Access and Fast Coherent Driving [45.82374977939355]
Quantum key distribution enables secure communication based on the principles of quantum mechanics.
Quantum repeaters are required to establish large-scale quantum networks.
We present an efficient spin-photon interface for quantum repeaters.
arXiv Detail & Related papers (2022-10-28T14:33:24Z) - Coherent control of a nuclear spin via interactions with a rare-earth
ion in the solid-state [0.0]
Individually addressed Er$3+$ ions in solid-state hosts are promising resources for quantum repeaters.
While the Er$3+$ electron spin provides a spin-photon interface, ancilla nuclear spins could enable multi-qubit registers with longer storage times.
We demonstrate coherent coupling between the electron spin of a single Er$3+$ ion and a single $I=1/2$ nuclear spin in the solid-state host crystal.
arXiv Detail & Related papers (2022-09-12T21:44:21Z) - Ytterbium nuclear-spin qubits in an optical tweezer array [0.0]
We report on the realization of a fast, scalable, and high-fidelity qubit architecture, based on $171$Yb atoms in an optical tweezer array.
We demonstrate several attractive properties of this atom for its use as a building block of a quantum information processing platform.
arXiv Detail & Related papers (2021-12-13T15:36:28Z) - Quantum control of nuclear spin qubits in a rapidly rotating diamond [62.997667081978825]
Nuclear spins in certain solids couple weakly to their environment, making them attractive candidates for quantum information processing and inertial sensing.
We demonstrate optical nuclear spin polarization and rapid quantum control of nuclear spins in a diamond physically rotating at $1,$kHz, faster than the nuclear spin coherence time.
Our work liberates a previously inaccessible degree of freedom of the NV nuclear spin, unlocking new approaches to quantum control and rotation sensing.
arXiv Detail & Related papers (2021-07-27T03:39:36Z) - Single electrons on solid neon as a solid-state qubit platform [10.980660117562438]
Novel qubit platforms embody long coherence, fast operation, and large scalability.
electron-on-solid-neon qubit already performs near the state of the art as a charge qubit.
arXiv Detail & Related papers (2021-06-18T19:35:16Z) - Entanglement between a telecom photon and an on-demand multimode
solid-state quantum memory [52.77024349608834]
We show the first demonstration of entanglement between a telecom photon and a collective spin excitation in a multimode solid-state quantum memory.
We extend the entanglement storage in the quantum memory for up to 47.7$mu$s, which could allow for the distribution of entanglement between quantum nodes separated by distances of up to 10 km.
arXiv Detail & Related papers (2021-06-09T13:59:26Z) - Electrically tuned hyperfine spectrum in neutral
Tb(II)(Cp$^{\rm{iPr5}}$)$_2$ single-molecule magnet [64.10537606150362]
Both molecular electronic and nuclear spin levels can be used as qubits.
In solid state systems with dopants, an electric field was shown to effectively change the spacing between the nuclear spin qubit levels.
This hyperfine Stark effect may be useful for applications of molecular nuclear spins for quantum computing.
arXiv Detail & Related papers (2020-07-31T01:48:57Z) - A Frequency-Multiplexed Coherent Electro-Optic Memory in Rare Earth
Doped Nanoparticles [94.37521840642141]
Quantum memories for light are essential components in quantum technologies like long-distance quantum communication and distributed quantum computing.
Recent studies have shown that long optical and spin coherence lifetimes can be observed in rare earth doped nanoparticles.
We report on coherent light storage in Eu$3+$:Y$$O$_3$ nanoparticles using the Stark Echo Modulation Memory (SEMM) quantum protocol.
arXiv Detail & Related papers (2020-06-17T13:25:54Z) - Conditional quantum operation of two exchange-coupled single-donor spin
qubits in a MOS-compatible silicon device [48.7576911714538]
Silicon nanoelectronic devices can host single-qubit quantum logic operations with fidelity better than 99.9%.
For the spins of an electron bound to a single donor atom, introduced in the silicon by ion implantation, the quantum information can be stored for nearly 1 second.
Here we demonstrate the conditional, coherent control of an electron spin qubit in an exchange-coupled pair of $31$P donors implanted in silicon.
arXiv Detail & Related papers (2020-06-08T11:25:16Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.