論文の概要: LKASeg:Remote-Sensing Image Semantic Segmentation with Large Kernel Attention and Full-Scale Skip Connections
- arxiv url: http://arxiv.org/abs/2410.10433v1
- Date: Mon, 14 Oct 2024 12:25:48 GMT
- ステータス: 処理完了
- システム内更新日: 2024-10-29 21:34:52.318717
- Title: LKASeg:Remote-Sensing Image Semantic Segmentation with Large Kernel Attention and Full-Scale Skip Connections
- Title(参考訳): LKASeg:大カーネルアテンションとフルスケールスキップ接続を用いたリモートセンシング画像セマンティックセマンティックセグメンテーション
- Authors: Xuezhi Xiang, Yibo Ning, Lei Zhang, Denis Ombati, Himaloy Himu, Xiantong Zhen,
- Abstract要約: LKASegというリモートセンシング画像セマンティックセマンティックネットワークを提案する。
LKASegはLarge Kernel Attention(LSKA)とFull-Scale Skip Connection(FSC)を組み合わせる
ISPRSのベイヒンゲンデータセットでは、mF1とmIoUのスコアは90.33%と82.77%に達した。
- 参考スコア(独自算出の注目度): 27.473573286685063
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Semantic segmentation of remote sensing images is a fundamental task in geospatial research. However, widely used Convolutional Neural Networks (CNNs) and Transformers have notable drawbacks: CNNs may be limited by insufficient remote sensing modeling capability, while Transformers face challenges due to computational complexity. In this paper, we propose a remote-sensing image semantic segmentation network named LKASeg, which combines Large Kernel Attention(LSKA) and Full-Scale Skip Connections(FSC). Specifically, we propose a decoder based on Large Kernel Attention (LKA), which extract global features while avoiding the computational overhead of self-attention and providing channel adaptability. To achieve full-scale feature learning and fusion, we apply Full-Scale Skip Connections (FSC) between the encoder and decoder. We conducted experiments by combining the LKA-based decoder with FSC. On the ISPRS Vaihingen dataset, the mF1 and mIoU scores achieved 90.33% and 82.77%.
- Abstract(参考訳): リモートセンシング画像のセマンティックセグメンテーションは地理空間研究の基本的な課題である。
しかし、広く使われている畳み込みニューラルネットワーク(CNN)とトランスフォーマーには、顕著な欠点がある。
本稿では,LKA(Large Kernel Attention)とFSC(Full-Scale Skip Connections)を組み合わせた,LKASegというリモートセンシング画像セマンティックセマンティックセマンティックネットワークを提案する。
具体的には,Large Kernel Attention (LKA)に基づくデコーダを提案する。これは,自己アテンションの計算オーバーヘッドを回避し,チャネル適応性を提供するとともに,グローバルな特徴を抽出する。
実大規模機能学習と融合を実現するために,エンコーダとデコーダの間にフルスケールスキップ接続(FSC)を適用する。
LKAをベースとしたデコーダとFSCを組み合わせた実験を行った。
ISPRSのベイヒンゲンデータセットでは、mF1とmIoUのスコアは90.33%と82.77%に達した。
関連論文リスト
- Remote Sensing Image Segmentation Using Vision Mamba and Multi-Scale Multi-Frequency Feature Fusion [9.098711843118629]
本稿では、状態空間モデル(SSM)を導入し、視覚マンバ(CVMH-UNet)に基づく新しいハイブリッドセマンティックセマンティックネットワークを提案する。
本手法は、クロス2Dスキャン(CS2D)を用いて、複数の方向からグローバル情報をフルにキャプチャする、クロス走査型視覚状態空間ブロック(CVSSBlock)を設計する。
ローカル情報取得におけるビジョン・マンバ(VMamba)の制約を克服するために畳み込みニューラルネットワークのブランチを組み込むことにより、このアプローチはグローバル機能とローカル機能の両方の包括的な分析を促進する。
論文 参考訳(メタデータ) (2024-10-08T02:17:38Z) - CM-UNet: Hybrid CNN-Mamba UNet for Remote Sensing Image Semantic Segmentation [19.496409240783116]
ローカル画像の特徴を抽出するCNNベースのエンコーダと,グローバル情報を集約・統合するMambaベースのデコーダからなるCM-UNetを提案する。
CSMambaブロックとMSAAモジュールを統合することで、CM-UNetは大規模リモートセンシング画像の長距離依存性とマルチスケールグローバルコンテキスト情報を効果的にキャプチャする。
論文 参考訳(メタデータ) (2024-05-17T04:20:12Z) - ELGC-Net: Efficient Local-Global Context Aggregation for Remote Sensing Change Detection [65.59969454655996]
本稿では,変化領域を正確に推定するために,リッチな文脈情報を利用する効率的な変化検出フレームワークELGC-Netを提案する。
提案するELGC-Netは、リモートセンシング変更検出ベンチマークにおいて、最先端の性能を新たに設定する。
また,ELGC-Net-LWも導入した。
論文 参考訳(メタデータ) (2024-03-26T17:46:25Z) - SCTransNet: Spatial-channel Cross Transformer Network for Infrared Small Target Detection [46.049401912285134]
赤外線小ターゲット検出(IRSTD)は近年,U字型ニューラルモデルから大きな恩恵を受けている。
既存のテクニックは、ターゲットが背景と高い類似性を持つ場合に苦労する。
本稿では,空間チャネルクロストランスネットワーク(SCTransNet)を提案する。
論文 参考訳(メタデータ) (2024-01-28T06:41:15Z) - SegNetr: Rethinking the local-global interactions and skip connections
in U-shaped networks [1.121518046252855]
U字型ネットワークは、シンプルで調整が容易な構造のため、医療画像セグメンテーションの分野を支配してきた。
我々は任意の段階で動的に局所的・局所的相互作用を行なえる新しいSegNetrブロックを導入する。
59%と76%のパラメータとGFLOPがバニラU-Netより少ない4つの主流医療画像セグメンテーションデータセットに対するSegNetrの有効性を検証した。
論文 参考訳(メタデータ) (2023-07-06T12:39:06Z) - Cross-receptive Focused Inference Network for Lightweight Image
Super-Resolution [64.25751738088015]
トランスフォーマーに基づく手法は、単一画像超解像(SISR)タスクにおいて顕著な性能を示した。
動的に特徴を抽出するために文脈情報を組み込む必要がある変換器は無視される。
我々は,CNNとTransformerを混合したCTブロックのカスケードで構成される,軽量なクロスレセプティブ・フォーカスド・推論・ネットワーク(CFIN)を提案する。
論文 参考訳(メタデータ) (2022-07-06T16:32:29Z) - MISSU: 3D Medical Image Segmentation via Self-distilling TransUNet [55.16833099336073]
医用画像セグメンテーションのためのトランスフォーマーベースUNetを提案する。
グローバルな意味情報と局所的な空間的詳細特徴を同時に学習する。
MISSUは従来の最先端手法よりも優れた性能を発揮する。
論文 参考訳(メタデータ) (2022-06-02T07:38:53Z) - Adjacent Context Coordination Network for Salient Object Detection in
Optical Remote Sensing Images [102.75699068451166]
本稿では,光RSI-SODのためのエンコーダ・デコーダアーキテクチャにおいて,隣接した特徴のコーディネートを探索するための新しいアジャセントコンテキストコーディネートネットワーク(ACCoNet)を提案する。
提案されたACCoNetは、9つの評価基準の下で22の最先端メソッドを上回り、1つのNVIDIA Titan X GPU上で81fpsで動作する。
論文 参考訳(メタデータ) (2022-03-25T14:14:55Z) - An Attention-Fused Network for Semantic Segmentation of
Very-High-Resolution Remote Sensing Imagery [26.362854938949923]
注目融合ネットワーク(AFNet)という,新しい畳み込みニューラルネットワークアーキテクチャを提案する。
ISPRS Vaihingen 2DデータセットとISPRS Potsdam 2Dデータセットで、総精度91.7%、平均F1スコア90.96%の最先端のパフォーマンスを実現します。
論文 参考訳(メタデータ) (2021-05-10T06:23:27Z) - Channelized Axial Attention for Semantic Segmentation [70.14921019774793]
チャネルアキシャルアテンション(CAA)を提案し、チャネルアテンションと軸アテンションをシームレスに統合し、計算複雑性を低減します。
私たちのCAAは、DANetのような他の注意モデルに比べて計算リソースをはるかに少なくするだけでなく、すべての検証済みデータセット上で最先端のResNet-101ベースのセグメンテーションモデルよりも優れています。
論文 参考訳(メタデータ) (2021-01-19T03:08:03Z) - Beyond Single Stage Encoder-Decoder Networks: Deep Decoders for Semantic
Image Segmentation [56.44853893149365]
セマンティックセグメンテーションのための単一エンコーダ-デコーダ手法は、セマンティックセグメンテーションの品質とレイヤー数あたりの効率の観点からピークに達している。
そこで本研究では,より多くの情報コンテンツを取得するために,浅層ネットワークの集合を用いたデコーダに基づく新しいアーキテクチャを提案する。
アーキテクチャをさらに改善するために,ネットワークの注目度を高めるために,クラスの再バランスを目的とした重み関数を導入する。
論文 参考訳(メタデータ) (2020-07-19T18:44:34Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。