論文の概要: Do we need more complex representations for structure? A comparison of note duration representation for Music Transformers
- arxiv url: http://arxiv.org/abs/2410.10515v1
- Date: Mon, 14 Oct 2024 13:53:11 GMT
- ステータス: 処理完了
- システム内更新日: 2024-10-29 21:05:04.683253
- Title: Do we need more complex representations for structure? A comparison of note duration representation for Music Transformers
- Title(参考訳): より複雑な構造表現は必要か? : 音楽変換器の音符持続時間表現の比較
- Authors: Gabriel Souza, Flavio Figueiredo, Alexei Machado, Deborah Guimarães,
- Abstract要約: そこで本研究では,既成のMusic Transformerモデルが,注釈のないMIDI情報のみを用いて,構造的類似度の測定を行うかどうかを問う。
最も一般的な表現の微妙な微調整が、小さなが重要な改善をもたらすことを示す。
- 参考スコア(独自算出の注目度): 0.0
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: In recent years, deep learning has achieved formidable results in creative computing. When it comes to music, one viable model for music generation are Transformer based models. However, while transformers models are popular for music generation, they often rely on annotated structural information. In this work, we inquire if the off-the-shelf Music Transformer models perform just as well on structural similarity metrics using only unannotated MIDI information. We show that a slight tweak to the most common representation yields small but significant improvements. We also advocate that searching for better unannotated musical representations is more cost-effective than producing large amounts of curated and annotated data.
- Abstract(参考訳): 近年、ディープラーニングはクリエイティブ・コンピューティングにおいて大きな成果を上げている。
音楽に関しては、音楽生成の実行可能なモデルのひとつがTransformerベースのモデルである。
しかし、トランスフォーマーモデルは音楽生成に人気がある一方で、アノテートされた構造情報に依存していることが多い。
そこで本研究では,既成のMusic Transformerモデルが,注釈のないMIDI情報のみを用いて,構造的類似度の測定を行うかどうかを問う。
最も一般的な表現の微妙な微調整が、小さなが重要な改善をもたらすことを示す。
我々はまた、大量のキュレートされた注釈付きデータを生成するよりも、より良い無意味な音楽表現を探す方がコスト効率が高いことを主張する。
関連論文リスト
- MeLFusion: Synthesizing Music from Image and Language Cues using Diffusion Models [57.47799823804519]
私たちは、ミュージシャンが映画の脚本だけでなく、視覚化を通して音楽を作る方法にインスピレーションを受けています。
本稿では,テキスト記述と対応する画像からの手がかりを効果的に利用して音楽を合成するモデルであるMeLFusionを提案する。
音楽合成パイプラインに視覚情報を加えることで、生成した音楽の質が大幅に向上することを示す。
論文 参考訳(メタデータ) (2024-06-07T06:38:59Z) - Choir Transformer: Generating Polyphonic Music with Relative Attention
on Transformer [4.866650264773479]
そこで我々はChoir Transformerというポリフォニック音楽生成ニューラルネットワークを提案する。
Choir Transformerのパフォーマンスは、以前の最先端の精度4.06%を上回っている。
実際に、生成されたメロディとリズムを所定の入力に応じて調整することができる。
論文 参考訳(メタデータ) (2023-08-01T06:44:15Z) - Simple and Controllable Music Generation [94.61958781346176]
MusicGenは単一の言語モデル(LM)であり、圧縮された離散的な音楽表現、すなわちトークンの複数のストリームで動作する。
以前の作業とは異なり、MusicGenはシングルステージのトランスフォーマーLMと効率的なトークンインターリービングパターンで構成されている。
論文 参考訳(メタデータ) (2023-06-08T15:31:05Z) - Hiera: A Hierarchical Vision Transformer without the Bells-and-Whistles [65.54857068975068]
本稿では、この追加のバルクは不要であると論じる。
強いビジュアル・プレテキスト・タスク(MAE)で事前トレーニングを行うことで、最先端の多段階視覚変換器から全てのベル・アンド・ウィストルを除去することができる。
Hieraは、非常に単純な階層型視覚変換器で、従来のモデルよりも正確です。
論文 参考訳(メタデータ) (2023-06-01T17:59:58Z) - Museformer: Transformer with Fine- and Coarse-Grained Attention for
Music Generation [138.74751744348274]
本研究では,音楽生成に新たな細粒度・粗粒度対応トランスフォーマーであるMuseformerを提案する。
具体的には、細かな注意を払って、特定のバーのトークンは、音楽構造に最も関係のあるバーのトークンに、直接参加する。
粗い注意を払って、トークンは計算コストを減らすために、それぞれのトークンではなく他のバーの要約にのみ参加する。
論文 参考訳(メタデータ) (2022-10-19T07:31:56Z) - The Power of Reuse: A Multi-Scale Transformer Model for Structural
Dynamic Segmentation in Symbolic Music Generation [6.0949335132843965]
シンボリック・ミュージック・ジェネレーションは、生成モデルの文脈表現能力に依存している。
粗大デコーダと細小デコーダを用いて,グローバルおよびセクションレベルのコンテキストをモデル化するマルチスケールトランスフォーマを提案する。
本モデルは2つのオープンMIDIデータセットで評価され,実験により,同時代のシンボリック・ミュージック・ジェネレーション・モデルよりも優れた性能を示した。
論文 参考訳(メタデータ) (2022-05-17T18:48:14Z) - Calliope -- A Polyphonic Music Transformer [9.558051115598657]
ポリフォニック音楽のマルチトラックシーケンスを効率的にモデル化するためのトランスフォーマーに基づく新しいオートエンコーダモデルCalliopeを提案する。
実験により,我々のモデルは,音楽シーケンスの再構築と生成における技術状況を改善することができることが示された。
論文 参考訳(メタデータ) (2021-07-08T08:18:57Z) - PopMAG: Pop Music Accompaniment Generation [190.09996798215738]
単一シーケンスでの同時マルチトラック生成が可能なMUlti-track MIDI表現(MuMIDI)を提案する。
MuMIDIはシーケンス長を拡大し、長期音楽モデリングの新しい課題をもたらす。
我々は,ポップミュージックの伴奏生成をPopMAGと呼ぶ。
論文 参考訳(メタデータ) (2020-08-18T02:28:36Z) - Synthesizer: Rethinking Self-Attention in Transformer Models [93.08171885200922]
ドット積の自己アテンションは、最先端のトランスフォーマーモデルでは不可欠である。
本稿では,ドット製品に基づく自己認識機構がトランスフォーマーモデルの性能に与える影響について検討する。
論文 参考訳(メタデータ) (2020-05-02T08:16:19Z) - Pop Music Transformer: Beat-based Modeling and Generation of Expressive
Pop Piano Compositions [37.66340344198797]
我々は、既存のトランスフォーマーモデルよりも優れたリズム構造でポップピアノ音楽を構成するポップ・ミュージック・トランスフォーマーを構築した。
特に、入力データにメートル法構造を課すことにより、トランスフォーマーは音楽のビートバーフレーズ階層構造をより容易に認識できるようにする。
論文 参考訳(メタデータ) (2020-02-01T14:12:35Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。