論文の概要: Motion-guided small MAV detection in complex and non-planar scenes
- arxiv url: http://arxiv.org/abs/2410.10527v1
- Date: Mon, 14 Oct 2024 14:06:41 GMT
- ステータス: 処理完了
- システム内更新日: 2024-10-29 21:05:04.660647
- Title: Motion-guided small MAV detection in complex and non-planar scenes
- Title(参考訳): 複合・非平面シーンにおける動き誘導型小型MAV検出
- Authors: Hanqing Guo, Canlun Zheng, Shiyu Zhao,
- Abstract要約: 複雑なシーンや非平面シーンで小さなMAVを正確に識別できる動き誘導型MAV検出器を提案する。
提案手法は, 動的, 複雑な背景から, 極めて小さなMAVを効果的に, 効率的に検出することができる。
- 参考スコア(独自算出の注目度): 10.15211816323658
- License: http://creativecommons.org/licenses/by-nc-sa/4.0/
- Abstract: In recent years, there has been a growing interest in the visual detection of micro aerial vehicles (MAVs) due to its importance in numerous applications. However, the existing methods based on either appearance or motion features encounter difficulties when the background is complex or the MAV is too small. In this paper, we propose a novel motion-guided MAV detector that can accurately identify small MAVs in complex and non-planar scenes. This detector first exploits a motion feature enhancement module to capture the motion features of small MAVs. Then it uses multi-object tracking and trajectory filtering to eliminate false positives caused by motion parallax. Finally, an appearance-based classifier and an appearance-based detector that operates on the cropped regions are used to achieve precise detection results. Our proposed method can effectively and efficiently detect extremely small MAVs from dynamic and complex backgrounds because it aggregates pixel-level motion features and eliminates false positives based on the motion and appearance features of MAVs. Experiments on the ARD-MAV dataset demonstrate that the proposed method could achieve high performance in small MAV detection under challenging conditions and outperform other state-of-the-art methods across various metrics
- Abstract(参考訳): 近年,マイクロエアロビー(MAV)の視覚的検出への関心が高まっている。
しかし、背景が複雑であったり、MAVが小さすぎる場合、外観や動きの特徴に基づく既存の手法は困難に遭遇する。
本稿では,複雑なシーンや非平面シーンにおいて,小型MAVを正確に識別できる動き誘導型MAV検出器を提案する。
この検出器はまず、小さなMAVの運動特徴を捉えるために、運動特徴増強モジュールを利用する。
次に、多目的追跡と軌跡フィルタリングを用いて、運動視差による偽陽性を除去する。
最後に、刈り取られた領域で動作する外見に基づく分類器と外見に基づく検出器を用いて、正確な検出結果を得る。
提案手法は,画素レベルの動作特徴を集約し,MAVの動作特徴と外観特徴に基づいて偽陽性を除去するため,動的,複雑な背景から極めて小さなMAVを効果的かつ効率的に検出することができる。
ARD-MAVデータセットの実験により、提案手法は、課題条件下での小型MAV検出において高い性能を達成し、様々な指標における他の最先端手法よりも優れていることが示された。
関連論文リスト
- Effective and Efficient Adversarial Detection for Vision-Language Models via A Single Vector [97.92369017531038]
Diverse hArmful Responses (RADAR) を用いた新しい laRge-scale Adervsarial 画像データセットを構築した。
そこで我々は,視覚言語モデル (VLM) の隠れ状態から抽出した1つのベクトルを利用して,入力中の良質な画像に対して対向画像を検出する,新しいiN時間埋め込み型AdveRSarial Image Detectction (NEARSIDE) 法を開発した。
論文 参考訳(メタデータ) (2024-10-30T10:33:10Z) - MM-Tracker: Motion Mamba with Margin Loss for UAV-platform Multiple Object Tracking [12.326023523101806]
無人航空機プラットフォームからの複数の物体追跡(MOT)には、効率的なモーションモデリングが必要である。
本研究では,ローカル・グローバル両方の動作特徴を探索するMotion Mamba Moduleを提案する。
また,動きのぼやけた物体の検出精度を効果的に向上するために,運動マージンの損失を設計する。
Motion Mambaモジュールとモーションマージンの損失に基づいて、提案したMM-Trackerは、2つの広くオープンソースUAV-MOTデータセットで最先端のデータを上回ります。
論文 参考訳(メタデータ) (2024-07-15T07:13:27Z) - Visible and Clear: Finding Tiny Objects in Difference Map [50.54061010335082]
本稿では,検出モデルに自己再構成機構を導入し,それと微小物体との強い相関関係を明らかにする。
具体的には、再構成画像と入力の差分マップを構築して、検出器の首の内側に再構成ヘッドを配置し、小さな物体に対して高い感度を示す。
さらに、小さな特徴表現をより明確にするために、差分マップガイド機能拡張(DGFE)モジュールを開発する。
論文 参考訳(メタデータ) (2024-05-18T12:22:26Z) - Motion-adaptive Separable Collaborative Filters for Blind Motion Deblurring [71.60457491155451]
様々な動きによって生じる画像のぼかしを除去することは、難しい問題である。
本研究では,動き適応型分離型協調フィルタと呼ばれる実世界のデブロアリングフィルタモデルを提案する。
本手法は,実世界の動きのぼかし除去に有効な解法を提供し,最先端の性能を実現する。
論文 参考訳(メタデータ) (2024-04-19T19:44:24Z) - Global-Local MAV Detection under Challenging Conditions based on
Appearance and Motion [27.11400452401168]
本研究では,MAV検出のための動作特徴と外観特徴を融合させるグローバルなMAV検出器を提案する。
提案した検出器の有効性をトレーニングし、検証するために、新しいデータセットが作成される。
特に、この検出器はNVIDIA Jetson NX Xavier上でほぼリアルタイムのフレームレートで動作させることができる。
論文 参考訳(メタデータ) (2023-12-18T08:06:36Z) - Joint-YODNet: A Light-weight Object Detector for UAVs to Achieve Above
100fps [2.5761958263376745]
小型物体を検知するためのUAVのためのJointYODNetという新しい手法を提案する。
本手法は, 小型物体の検出性能を高めるため, 接合損失関数の開発を中心に展開する。
その結果,提案した関節損失関数は,小さな物体を正確に位置決めする既存の手法よりも優れていた。
論文 参考訳(メタデータ) (2023-09-27T16:57:04Z) - FOLT: Fast Multiple Object Tracking from UAV-captured Videos Based on
Optical Flow [27.621524657473945]
複数物体追跡(MOT)はコンピュータビジョンにおいてよく研究されている。
しかし、無人航空機(UAV)が撮影したビデオのMOTは、小さな物体の大きさ、ぼやけた物体の外観、そして非常に大きくて不規則な動きのために依然として困難である。
我々はこれらの問題を緩和し、UAVビューで高速かつ正確なMOTに到達するためにFOLTを提案する。
論文 参考訳(メタデータ) (2023-08-14T15:24:44Z) - Discovery-and-Selection: Towards Optimal Multiple Instance Learning for
Weakly Supervised Object Detection [86.86602297364826]
複数インスタンス学習(DS-MIL)と融合した発見・選択手法を提案する。
我々の提案するDS-MILアプローチは,最先端の性能を報告しながら,ベースラインを一貫して改善することができる。
論文 参考訳(メタデータ) (2021-10-18T07:06:57Z) - Finding a Needle in a Haystack: Tiny Flying Object Detection in 4K
Videos using a Joint Detection-and-Tracking Approach [19.59528430884104]
本稿では,検出と追跡を共同で行うrecurrent correlational networkと呼ばれるニューラルネットワークモデルを提案する。
鳥や無人航空機などの小さな飛行物体の画像を含むデータセットを用いた実験では、提案手法は一貫した改善をもたらした。
我々のネットワークは、鳥の画像データセットのトラッカーとして評価されたとき、最先端の汎用オブジェクトトラッカと同様に機能します。
論文 参考訳(メタデータ) (2021-05-18T03:22:03Z) - Perceiving Traffic from Aerial Images [86.994032967469]
本研究では,空中画像中の物体を検出するために,バタフライ検出器と呼ばれる物体検出手法を提案する。
UAVDT(UAVDT)とVisDrone 2019(VisDrone 2019)の2つのUAVデータセット上でButterfly Detectorを評価し、従来の最先端の手法よりも高速に動作し、かつリアルタイムに動作可能であることを示す。
論文 参考訳(メタデータ) (2020-09-16T11:37:43Z) - TinyVIRAT: Low-resolution Video Action Recognition [70.37277191524755]
現実世界の監視環境では、ビデオ内のアクションは幅広い解像度でキャプチャされる。
天然の低解像度アクティビティを含むベンチマークデータセットTinyVIRATを導入する。
本稿では,プログレッシブ・ジェネレーティブ・アプローチを用いたビデオにおける小さな動作を認識する新しい手法を提案する。
論文 参考訳(メタデータ) (2020-07-14T21:09:18Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。