論文の概要: SLaNC: Static LayerNorm Calibration
- arxiv url: http://arxiv.org/abs/2410.10553v1
- Date: Mon, 14 Oct 2024 14:32:55 GMT
- ステータス: 処理完了
- システム内更新日: 2024-10-29 20:55:06.288925
- Title: SLaNC: Static LayerNorm Calibration
- Title(参考訳): SLaNC: 静的レイヤNormキャリブレーション
- Authors: Mahsa Salmani, Nikita Trukhanov, Ilya Soloveychik,
- Abstract要約: より精度の低いフォーマットへの量子化は、利用可能な値表現の限られた範囲によって引き起こされる多くの課題を自然に引き起こす。
本稿では,推論中のTransformerモデルに容易に適用可能な,計算効率のよいスケーリング手法を提案する。
提案手法は,直近の線形層の静的重みに基づくLayerNorm入力のスケーリング方法を提案する。
- 参考スコア(独自算出の注目度): 1.2016264781280588
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: The ever increasing sizes of Large Language Models (LLMs) beyond hundreds of billions of parameters have generated enormous pressure on the manufacturers of dedicated hardware accelerators and made the innovative design of the latter one of the most rapidly expanding fields of the AI industry. Various approaches have been explored to enable efficient and accurate processing of LLMs on the available accelerators given their computational and storage limitations. Among these, various quantization techniques have become the main focus of the community as a means of reducing the compute, communication and storage requirements. Quantization to lower precision formats naturally poses a number of challenges caused by the limited range of the available value representations. When it comes to processing the popular Transformer models on hardware, one of the main issues becomes calculation of the LayerNorm simply because accumulation of the variance requires a much wider dynamic range than the hardware enables. In this article, we address this matter and propose a computationally-efficient scaling technique that can be easily applied to Transformer models during inference. Our method suggests a straightforward way of scaling the LayerNorm inputs based on the static weights of the immediately preceding linear layers. The scaling factors are computed offline, based solely on the linear layer weights, hence no latency or computational overhead is added during inference. Most importantly, our technique ensures that no numerical issues such as overflow or underflow could happen during the compute. This approach offers smooth, accurate and resource-effective inference across a wide range of hardware architectures. The article provides theoretical justification as well as supporting numerical simulations.
- Abstract(参考訳): 数十億のパラメータを超えるLarge Language Models(LLM)のサイズは、専用ハードウェアアクセラレーターのメーカーに大きな圧力を与え、AI業界で最も急速に拡大している分野の1つとして、後者の革新的なデザインを生み出した。
計算量や記憶量に制限があるため、利用可能なアクセラレータ上でのLLMの効率的かつ正確な処理を実現するために、様々なアプローチが検討されている。
これらのうち、計算、通信、ストレージの要求を減らす手段として、様々な量子化技術がコミュニティの中心となっている。
より精度の低いフォーマットへの量子化は、利用可能な値表現の限られた範囲によって引き起こされる多くの課題を自然に引き起こす。
一般的なTransformerモデルをハードウェア上で処理する場合、主な問題のひとつは、分散の蓄積がハードウェアよりもはるかに広いダイナミックレンジを必要とするため、LayerNormの計算である。
本稿では,この問題に対処し,推論中のトランスフォーマーモデルに容易に適用可能な,計算効率のよいスケーリング手法を提案する。
提案手法は,直近の線形層の静的重みに基づくLayerNorm入力のスケーリング方法を提案する。
スケーリング係数は、線形層重みのみに基づいてオフラインで計算されるため、推論中に遅延や計算オーバーヘッドは追加されない。
最も重要なことは、計算中にオーバーフローやアンダーフローなどの数値的な問題が起こらないようにすることです。
このアプローチは、幅広いハードウェアアーキテクチャにわたってスムーズで正確でリソース効率の良い推論を提供する。
この論文は、理論的正当化と数値シミュレーションのサポートを提供する。
関連論文リスト
- Accelerating Error Correction Code Transformers [56.75773430667148]
本稿では,トランスを用いたデコーダの高速化手法を提案する。
最新のハードウェアでは、90%の圧縮比を実現し、算術演算エネルギー消費を少なくとも224倍削減する。
論文 参考訳(メタデータ) (2024-10-08T11:07:55Z) - Search for Efficient Large Language Models [52.98684997131108]
大規模言語モデル(LLMs)は、人工知能研究の領域で長い間停滞してきた。
軽量プルーニング、量子化、蒸留がLLMの圧縮に取り入れられ、メモリの削減と推論の加速を狙った。
ほとんどのモデル圧縮技術は、最適アーキテクチャの探索を見越して重量最適化に重点を置いている。
論文 参考訳(メタデータ) (2024-09-25T21:32:12Z) - Hybrid Dynamic Pruning: A Pathway to Efficient Transformer Inference [1.0919012968294923]
本稿では,頭部の疎度を用いてトランスフォーマーを高速化し,疎度をブロックし,注意の計算を減らし,メモリアクセスを減らし,新しいアルゴリズムアーキテクチャの共設計手法を提案する。
注目スコアと注目ヘッドの巨大な冗長性を観測し、実行時に注目行列内の重要でないブロックをプルーする整数ベースの行平衡ブロックプルーニングを提案する。
また、実行時に重要でないヘッドを検出およびプルーする整数ベースのヘッドプルーニングを提案する。
論文 参考訳(メタデータ) (2024-07-17T11:15:16Z) - Tender: Accelerating Large Language Models via Tensor Decomposition and Runtime Requantization [0.6445087473595953]
大規模言語モデル(LLM)は、機械学習における様々なタスクにおいて優れたパフォーマンスを示す。
LLM推論のデプロイは、高い計算とメモリ要求のために問題となる。
我々は,低精度でLLM推論を効率的に展開できるアルゴリズム-ハードウェア共設計ソリューションであるテンダーを提案する。
論文 参考訳(メタデータ) (2024-06-16T09:51:55Z) - Lean Attention: Hardware-Aware Scalable Attention Mechanism for the Decode-Phase of Transformers [4.674454841332859]
トランスフォーマーベースのモデルは、自然言語処理の最も広く使われているアーキテクチャの1つとして登場した。
これらの巨大なモデルはメモリが空腹で、最先端のAIアクセラレータでも大きな推論レイテンシが生じる。
本稿ではトークン生成フェーズの自己認識をスケーラブルに計算する手法であるLeanAttentionを提案する。
論文 参考訳(メタデータ) (2024-05-17T00:52:39Z) - Accurate Block Quantization in LLMs with Outliers [0.6138671548064355]
極大規模LLMの推理需要はここ数カ月で大きく伸びている。
この問題は処理中のシーケンスの長さが爆発的に増加することで増大する。
重みとアクティベーションの両方の正確な量子化を可能にする様々な量子化技術が提案されている。
論文 参考訳(メタデータ) (2024-03-29T12:15:06Z) - DeepGEMM: Accelerated Ultra Low-Precision Inference on CPU Architectures
using Lookup Tables [49.965024476651706]
DeepGEMMはSIMDハードウェア上で超高精度畳み込みニューラルネットワークを実行するためのルックアップテーブルベースのアプローチである。
実装は、x86プラットフォーム上で、対応する8ビット整数カーネルを最大1.74倍の性能で上回る。
論文 参考訳(メタデータ) (2023-04-18T15:13:10Z) - Energy-efficient Task Adaptation for NLP Edge Inference Leveraging
Heterogeneous Memory Architectures [68.91874045918112]
Adapter-ALBERTは、様々なタスクにわたる最大データ再利用のための効率的なモデル最適化である。
検証されたNLPエッジアクセラレータ上でシミュレーションを行うことにより、モデルを不均一なオンチップメモリアーキテクチャにマッピングする利点を実証する。
論文 参考訳(メタデータ) (2023-03-25T14:40:59Z) - GradInit: Learning to Initialize Neural Networks for Stable and
Efficient Training [59.160154997555956]
ニューラルネットワークを初期化するための自動化およびアーキテクチャ手法であるgradinitを提案する。
各ネットワーク層の分散は、SGDまたはAdamの単一ステップが最小の損失値をもたらすように調整される。
また、学習率のウォームアップを伴わずに、オリジナルのPost-LN Transformerを機械翻訳用にトレーニングすることもできる。
論文 参考訳(メタデータ) (2021-02-16T11:45:35Z) - Scalable Deep-Learning-Accelerated Topology Optimization for Additively
Manufactured Materials [4.221095652322005]
トポロジー最適化(TO)は、新しい構造、材料、デバイスを設計するための、人気があり強力な計算手法である。
これらの課題に対処するため、SDL-TOと呼ばれる汎用拡張型ディープラーニング(DL)ベースのToフレームワークを提案する。
我々のフレームワークは、反復履歴データを学習し、与えられた設計と勾配のマッピングを同時にトレーニングすることで、TOを加速します。
論文 参考訳(メタデータ) (2020-11-28T17:38:31Z) - One-step regression and classification with crosspoint resistive memory
arrays [62.997667081978825]
高速で低エネルギーのコンピュータは、エッジでリアルタイム人工知能を実現するために要求されている。
ワンステップ学習は、ボストンの住宅のコスト予測と、MNIST桁認識のための2層ニューラルネットワークのトレーニングによって支援される。
結果は、クロスポイントアレイ内の物理計算、並列計算、アナログ計算のおかげで、1つの計算ステップで得られる。
論文 参考訳(メタデータ) (2020-05-05T08:00:07Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。